论文标题

硅,德国烯和stanene的电动巨型浆果曲率偶极子

Electrically switchable giant Berry curvature dipole in silicene, germanene and stanene

论文作者

Bandyopadhyay, Arka, Joseph, Nesta Benno, Narayan, Awadhesh

论文摘要

时间反转对称性系统中的异常大厅效应是由浆果曲率理论的概念支撑的。但是,最近的实验表明,在非磁性系统中可以观察到非线性霍尔效应而不应用外部磁场。在时间反转对称条件下,非线性霍尔效应的出现可以用不变的浆果曲率偶极子来解释,这是由反转对称性破坏引起的。在这项工作中,我们利用了逼真的紧密结合模型,第一原理计算和对称分析,以探索横向电场和应变的综合效果,这导致了元素搭扣蜂窝状晶格中巨大的浆果曲率偶极子 - 硅,德国烯,德国烯和Stanene。外部电场破坏了这些系统的反转对称性,而应变有助于达到单个山谷的浆果曲率的不对称分布。此外,电子波函数的拓扑从带倒置的量子旋转厅状态转换为在无间隙点处正常绝缘。在临界电场强度下,闭合的带隙伴随着增强的浆果曲率,并在费米水平上伴随着巨大的浆果曲率偶极子。我们的结果预测了可以通过实验验证的新一类元素系统中的可转换非线性电气和热室效应的发生。

The anomalous Hall effect in time-reversal symmetry broken systems is underpinned by the concept of Berry curvature in band theory. However, recent experiments reveal that the nonlinear Hall effect can be observed in non-magnetic systems without applying an external magnetic field. The emergence of nonlinear Hall effect under time-reversal symmetric conditions can be explained in terms of non-vanishing Berry curvature dipole arising from inversion symmetry breaking. In this work, we availed realistic tight-binding models, first-principles calculations, and symmetry analyses to explore the combined effect of transverse electric field and strain, which leads to a giant Berry curvature dipole in the elemental buckled honeycomb lattices -- silicene, germanene, and stanene. The external electric field breaks the inversion symmetry of these systems, while strain helps to attain an asymmetrical distribution of Berry curvature of a single valley. Furthermore, the topology of the electronic wavefunction switches from the band inverted quantum spin Hall state to normal insulating one at the gapless point. This band gap closing at the critical electric field strength is accompanied by an enhanced Berry curvature and concomitantly a giant Berry curvature dipole at the Fermi level. Our results predict the occurrence of an electrically switchable nonlinear electrical and thermal Hall effect in a new class of elemental systems that can be experimentally verified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源