论文标题
原子干涉floquet Atom光学器件
Atom Interferometry with Floquet Atom Optics
论文作者
论文摘要
Floquet Engineering提供了一种令人信服的方法,用于设计定期驱动系统的时间演变。我们实现了一个定期的原子 - 光耦合,以实现跨质$ {}^1 \!s_0 \,\ text { - } \,{}^3 \!p_1 $ transition上的floquet atom光学。这些原子光学元件在光和原子共振之间的频率偏移范围内达到$ 99.4 \%$以上的脉冲效率,即使在强劲的驾驶中,这种引起的频率在Rabi频率的顺序上。此外,我们使用Floquet Atom光学元件来弥补大动量传递原子干涉仪中的差异多普勒偏移,并实现超过$ 400〜 \ hbar k $的最新动量分离。该技术可以在任意耦合强度下应用于任何两级系统,并在连贯的量子控制中使用广泛应用。
Floquet engineering offers a compelling approach for designing the time evolution of periodically driven systems. We implement a periodic atom-light coupling to realize Floquet atom optics on the strontium ${}^1\!S_0\,\text{-}\, {}^3\!P_1$ transition. These atom optics reach pulse efficiencies above $99.4\%$ over a wide range of frequency offsets between light and atomic resonance, even under strong driving where this detuning is on the order of the Rabi frequency. Moreover, we use Floquet atom optics to compensate for differential Doppler shifts in large momentum transfer atom interferometers and achieve state-of-the-art momentum separation in excess of $400~\hbar k$. This technique can be applied to any two-level system at arbitrary coupling strength, with broad application in coherent quantum control.