论文标题

在Rado图上随机步行

A random walk on the Rado graph

论文作者

Chatterjee, Sourav, Diaconis, Persi, Miclo, Laurent

论文摘要

RADO图,也称为随机图$ g(\ infty,p)$,是有限图的经典限制对象。我们研究自然球的步行是理解该图的几何形状的一种方式。对于$ i $开始的步行,我们表明订单$ \ log_2^*i $步骤就足够了,对于无限的许多$ i $来说,对于融合了平稳性所必需的。证明涉及将Hardy的不平等应用于树木的应用。

The Rado graph, also known as the random graph $G(\infty, p)$, is a classical limit object for finite graphs. We study natural ball walks as a way of understanding the geometry of this graph. For the walk started at $i$, we show that order $\log_2^*i$ steps are sufficient, and for infinitely many $i$, necessary for convergence to stationarity. The proof involves an application of Hardy's inequality for trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源