论文标题

有限的投影线和翻译平面中的分散线性套件

Scattered linear sets in a finite projective line and translation planes

论文作者

Casarino, Valentina, Longobardi, Giovanni, Zanella, Corrado

论文摘要

Lunardon和Polverino构建了一个翻译平面,从$ \ Mathrm {pg}(1,q^t)$中的伪造型式线性套装开始。在本文中,描述并研究了类似的翻译平面$ \ MATHCAL A_F $从$ \ Mathbb f_ {q^t} [x] [x] $中获得的任何分散的线性多项式$ f(x)$获得的类似结构。定义了产生此类平面的一类Quasifield。用$ u_f $表示$ \ mathbb f_q $ -subspace of $ \ mathbb f_ {q^t}^2 $与$ f(x)$相关。如果$ f(x)$和$ f'(x)$分散了,则$ \ Mathcal a_f $和$ \ Mathcal a_ {f'} $在且仅当$ u_f $和$ u_f $和$ u_f $ and $ u_f'} $属于同一ORBIT的情况下属于$ $ umγ\ Mathrm l(2,Q^t)$时。这引起了与不相等的线性线性多项式相同的不同的翻译平面。 In particular, for any scattered linear set $L$ of maximum rank in $\mathrm{PG}(1,q^t)$ there are $c_Γ(L)$ pairwise non-isomorphic translation planes, where $c_Γ(L)$ denotes the $Γ\mathrm L$-class of $L$, as defined by Csajbók, Marino and Polverino. JHA和Johnson的结果允许描述从Lunardon和Polverino定义的未定义的伪基型类型的线性集合获得的平面的自动形群。

Lunardon and Polverino construct a translation plane starting from a scattered linear set of pseudoregulus type in $\mathrm{PG}(1,q^t)$. In this paper a similar construction of a translation plane $\mathcal A_f$ obtained from any scattered linearized polynomial $f(x)$ in $\mathbb F_{q^t}[x]$ is described and investigated. A class of quasifields giving rise to such planes is defined. Denote by $U_f$ the $\mathbb F_q$-subspace of $\mathbb F_{q^t}^2$ associated with $f(x)$. If $f(x)$ and $f'(x)$ are scattered, then $\mathcal A_f$ and $\mathcal A_{f'}$ are isomorphic if and only if $U_f$ and $U_{f'}$ belong to the same orbit under the action of $Γ\mathrm L(2,q^t)$. This gives rise to as many distinct translation planes as there are inequivalent scattered linearized polynomials. In particular, for any scattered linear set $L$ of maximum rank in $\mathrm{PG}(1,q^t)$ there are $c_Γ(L)$ pairwise non-isomorphic translation planes, where $c_Γ(L)$ denotes the $Γ\mathrm L$-class of $L$, as defined by Csajbók, Marino and Polverino. A result by Jha and Johnson allows to describe the automorphism groups of the planes obtained from the linear sets not of pseudoregulus type defined by Lunardon and Polverino.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源