论文标题

可推广的医学图像细分的对比域删除

Contrastive Domain Disentanglement for Generalizable Medical Image Segmentation

论文作者

Gu, Ran, Lu, Jiangshan, Zhang, Jingyang, Lei, Wenhui, Zhang, Xiaofan, Wang, Guotai, Zhang, Shaoting

论文摘要

有效利用判别特征对于卷积神经网络在医学图像分割中实现出色的性能至关重要,对于跨多个域的模型泛化也很重要,在多个域中,让模型识别域特异性和域中的多站点数据集对域的合理策略是域通用策略的合理策略。不幸的是,由于所提供的数据分布的局限性,最近大多数最近的Disentangle网络都无法直接适应于看不见的域数据集。为了解决这一缺陷,我们提出了对比域Disentangle(CDD)网络,以进行可推广的医学图像分割。我们首先引入了一个分离网络,将医学图像分解为解剖学表示因素和模态表示因素。然后,提出了一种样式的对比损失,以鼓励同一领域的模态表示,以在彼此疏远不同域的同时分发尽可能近。最后,我们提出了一种域增强策略,该策略可以随机生成用于模型泛化训练的新领域。用于视杯和圆盘分割的多站点底面图像数据集的实验结果表明,CDD具有良好的模型概括。我们提出的CDD优于域可推广分段中的几种最新方法。

Efficiently utilizing discriminative features is crucial for convolutional neural networks to achieve remarkable performance in medical image segmentation and is also important for model generalization across multiple domains, where letting model recognize domain-specific and domain-invariant information among multi-site datasets is a reasonable strategy for domain generalization. Unfortunately, most of the recent disentangle networks are not directly adaptable to unseen-domain datasets because of the limitations of offered data distribution. To tackle this deficiency, we propose Contrastive Domain Disentangle (CDD) network for generalizable medical image segmentation. We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor. Then, a style contrastive loss is proposed to encourage the modality representations from the same domain to distribute as close as possible while different domains are estranged from each other. Finally, we propose a domain augmentation strategy that can randomly generate new domains for model generalization training. Experimental results on multi-site fundus image datasets for optic cup and disc segmentation show that the CDD has good model generalization. Our proposed CDD outperforms several state-of-the-art methods in domain generalizable segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源