论文标题
相互作用的准二维系统的热化
Thermalization of interacting quasi-one-dimensional systems
论文作者
论文摘要
许多实验相关的系统都是准二维的,由几乎脱钩的链组成。在这些系统中,强烈的链内相互作用与弱链耦合之间存在自然分离。当链内相互作用是可集成的时,弱链耦合在热化系统中起着至关重要的作用。在这里,我们开发了涉及任何可相互作用的集成系统的碰撞积分涉及碰撞积分的玻尔兹曼方程形式主义,并将其应用于实验相关的牛顿摇篮设置中的耦合bose气体中的放松定量理论。我们发现放松涉及各种各样的时标。我们提供的证据表明,马尔可夫在晚期放松的过程是无间隔的。因此,即使对于空间均匀的扰动,平衡方法通常是非指数的。
Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled chains. In these systems, there is a natural separation of scales between the strong intra-chain interactions and the weak interchain coupling. When the intra-chain interactions are integrable, weak interchain couplings play a crucial part in thermalizing the system. Here, we develop a Boltzmann-equation formalism involving a collision integral that is asymptotically exact for any interacting integrable system, and apply it to develop a quantitative theory of relaxation in coupled Bose gases in the experimentally relevant Newton's cradle setup. We find that relaxation involves a broad spectrum of timescales. We provide evidence that the Markov process governing relaxation at late times is gapless; thus, the approach to equilibrium is generally non-exponential, even for spatially uniform perturbations.