论文标题

英特尔SGX的全面基准套件

A Comprehensive Benchmark Suite for Intel SGX

论文作者

Kumar, Sandeep, Panda, Abhisek, Sarangi, Smruti R.

论文摘要

值得信赖的执行环境(TEE),例如\ intelsgx,可促进在未经信任的机器上的安全执行。可悲的是,这些环境在将数据写回主内存,与OS的互动以及发出I/O指令的能力方面遭受了严重的局限性和性能开销。因此,有很多工作重点是改善此类环境的性能 - 这需要需要标准,广泛接受的基准套件(类似于Spec和Parsec)。据我们所知,不存在这样的套房。 我们的套件SGXGAUGE包含一套多样化的工作负载,例如区块链代码,安全的机器学习算法,轻型Web服务器,安全的钥匙值商店等。我们彻底地表征了基于库OS OS OS Shimming Lays(GraphenEsGX)的基本平台上的基准套件的行为。我们观察到,最重要的指标是与分页,内存和TLB访问有关的绩效计数器。当内存足迹开始超过Intel SGX中EPC大小的大小时,性能会发生突然变化,并且库OS不会添加显着的开销(〜 +-10%)。

Trusted execution environments (TEEs) such as \intelsgx facilitate the secure execution of an application on untrusted machines. Sadly, such environments suffer from serious limitations and performance overheads in terms of writing back data to the main memory, their interaction with the OS, and the ability to issue I/O instructions. There is thus a plethora of work that focuses on improving the performance of such environments -- this necessitates the need for a standard, widely accepted benchmark suite (something similar to SPEC and PARSEC). To the best of our knowledge, such a suite does not exist. Our suite, SGXGauge, contains a diverse set of workloads such as blockchain codes, secure machine learning algorithms, lightweight web servers, secure key-value stores, etc. We thoroughly characterizes the behavior of the benchmark suite on a native platform and on a platform that uses a library OS-based shimming layer (GrapheneSGX). We observe that the most important metrics of interest are performance counters related to paging, memory, and TLB accesses. There is an abrupt change in performance when the memory footprint starts to exceed the size of the EPC size in Intel SGX, and the library OS does not add a significant overhead (~ +- 10%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源