论文标题

连续相变的全息理论 - 无骨的出现和对称性保护

Holographic theory for continuous phase transitions -- the emergence and symmetry protection of gaplessness

论文作者

Chatterjee, Arkya, Wen, Xiao-Gang

论文摘要

如果它们的局部对称操作员的代数是同构的,则两个全球对称性是全球等效的。全球对称性的全等等类别通过一个更高维度(称为对称性为对称性)在一个较高的维度(称为对称性)中分类,这会导致对称/拓扑阶(SYMM/TO)对应关系。我们确定:(1)对于具有对称性与$ m $描述的对称的系统,它们的间隙和无间隙状态是由Condensable Algebras $ a $分类的,由基本激发$ M $组成,具有琐碎的自我/互助统计。这样的分类状态(称为$ a $ states)可以以统一的方式描述对称性破坏顺序,受对称的拓扑命令,富含对称性的拓扑顺序,无间隙临界点等。 (2)使用全息模块化模块化bootstrap(Holomb),可以将$ a $ state的本地低能特性计算为$ m _ {/a} $,该模块化模块化bootstrap(holomb)将$ m _ {/a} $作为输入。这里$ m _ {/a} $是通过$ m $从$ a $ $ a $中获得的。值得注意的是,如果$ m _ {/a} $是非平地的,则$ a $ state必须是无间隙的。这提供了对适用于异常,更高形式和/或不可逆转的对称性的无间隙性的出现和对称保护的统一理解。 (3)可凝结代数之间的关系限制了全局相图的结构。 (4)1+1D的带有$ S_3 $对称性的玻感系统具有四个间隙阶段,带有不间断的对称性$ S_3 $,$ \ MATHBB {Z} _3 $,$ \ MATHBB {Z} _2 _2 _2 $,和$ \ MATHBB {Z} _1 _1 $。我们发现两个过渡之间的二元性$ s_3 \ leftrightArrow \ mathbb {z} _1 $和$ \ mathbb {z} _3 \ leftrightArrow \ leftrightArrow \ mathbb {z} _2 $:它们都是(稳定地)的情况,并且在lise中是相同的,并且在l.condect中是相同的,并且是在范围的情况下,并且是在late的情况下(condect)。

Two global symmetries are holo-equivalent if their algebras of local symmetric operators are isomorphic. Holo-equivalent classes of global symmetries are classified by gappable-boundary topological orders (TO) in one higher dimension (called symmetry TO), which leads to a symmetry/topological-order (Symm/TO) correspondence. We establish that: (1) For systems with a symmetry described by symmetry TO $M$, their gapped and gapless states are classified by condensable algebras $A$, formed by elementary excitations in $M$ with trivial self/mutual statistics. Such classified states (called $A$-states) can describe symmetry breaking orders, symmetry protected topological orders, symmetry enriched topological orders, gapless critical points, etc., in a unified way. (2) The local low-energy properties of an $A$-state can be calculated from its reduced symmetry TO $M_{/A}$, using holographic modular bootstrap (holoMB) which takes $M_{/A}$ as an input. Here $M_{/A}$ is obtained from $M$ by condensing excitations in $A$. Notably, an $A$-state must be gapless if $M_{/A}$ is nontrivial. This provides a unified understanding of the emergence and symmetry protection of gaplessness that applies to symmetries that are anomalous, higher-form, and/or non-invertible. (3) The relations between condensable algebras constrain the structure of the global phase diagram. (4) 1+1D bosonic systems with $S_3$ symmetry have four gapped phases with unbroken symmetries $S_3$, $\mathbb{Z}_3$, $\mathbb{Z}_2$, and $\mathbb{Z}_1$. We find a duality between two transitions $S_3 \leftrightarrow \mathbb{Z}_1$ and $\mathbb{Z}_3 \leftrightarrow \mathbb{Z}_2$: they are either both first order or both (stably) continuous, and in the latter case, they are described by the same conformal field theory (CFT).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源