论文标题

纺纱棒气体中易于平面铁磁铁的凝结和热化

Condensation and thermalization of an easy-plane ferromagnet in a spinor Bose gas

论文作者

Prüfer, Maximilian, Spitz, Daniel, Lannig, Stefan, Strobel, Helmut, Berges, Jürgen, Oberthaler, Markus K.

论文摘要

自旋的广泛控制使Spintronics成为未来可伸缩量子设备的有前途的候选者。对于生成自旋 - 卵子系统的生成,必须详细了解相干性和放松的建立。但是,为了确定可靠的相干性能和忠实见证热化的相关参数,需要直接访问空间和时间分辨的自旋可观察物。在这里,我们研究了使用均匀的一维纺纱杆气体的易于平面铁磁铁的热化。在原始制备和读数的原始控制的基础上,我们证明了旋转场远程相干性的动态出现,并通过实验测试Landau的标准来验证自旋 - 散发性。我们揭示了出现的准准颗粒的结构:一种“大规模”(希格斯)模式和两个“质量”(戈德石)模式 - 分别是显式和自发对称性破坏的结果。我们的实验首次允许观察易于平面铁磁玻璃气体的热化;我们发现,与从Bogoliubov近似中的基础显微镜模型获得的热预测相关的动量分辨可观察到的一致性。我们的方法和结果铺平了对大型磁性自旋系统中凝结动力学的定量理解的道路,并研究了纠缠和拓扑激发其热化的作用。

The extensive control of spin makes spintronics a promising candidate for future scalable quantum devices. For the generation of spin-superfluid systems, a detailed understanding of the build-up of coherence and relaxation is necessary. However, to determine the relevant parameters for robust coherence properties and faithfully witnessing thermalization, the direct access to space- and time-resolved spin observables is needed. Here, we study the thermalization of an easy-plane ferromagnet employing a homogeneous one-dimensional spinor Bose gas. Building on the pristine control of preparation and readout we demonstrate the dynamic emergence of long-range coherence for the spin field and verify spin-superfluidity by experimentally testing Landau's criterion. We reveal the structure of the emergent quasi-particles: one 'massive'(Higgs) mode, and two 'massless' (Goldstone) modes - a consequence of explicit and spontaneous symmetry breaking, respectively. Our experiments allow for the first time to observe the thermalization of an easy-plane ferromagnetic Bose gas; we find agreement for the relevant momentum-resolved observables with a thermal prediction obtained from an underlying microscopic model within the Bogoliubov approximation. Our methods and results pave the way towards a quantitative understanding of condensation dynamics in large magnetic spin systems and the study of the role of entanglement and topological excitations for its thermalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源