论文标题

量子随机相位空间定理在模型中导致隐藏的因果环,用于测量与宏观现实主义,贝尔非局部性和无信号一致的测量

Quantum stochastic phase-space theorems lead to hidden causal loops in a model for measurement consistent with macroscopic realism, Bell nonlocality and no-signaling

论文作者

Reid, M D, Drummond, P D

论文摘要

在本文中,我们展示了如何与宏观的现实主义和无信号一起一致地解释量子测量和非局部性。我们在以特征状态叠加的系统中分析了$ \ hat {x} $的测量,其测量为放大,并通过与放大器进行交互实现。推导量子随机路径综合定理,我们证明了相位空间概率分布$ q(x,p)$(唯一代表量子状态)和随机变量,$ x $和$ p $,分别在时间上向后传播的$ x $和$之间的随机轨迹。对于叠加而不是混合物,向后和前向轨迹通过初始时间条件分布$ q(p | x)$连接,从而导致因果环。 $ x(t)$和$ p(t)$ q(x,p,t)$的联合密度,确认因果一致性。功能是与本征态相关的隐藏噪声。与特征值不同,这种噪声不会放大。这激发了一个本体论模型进行测量,其中扩增的振幅X(t)给出了检测到的结果,而Born的规则则遵循。对于宏观叠加,我们证明了与宏观现实主义的一致性:此外,我们评估了以给定结果为条件的耦合轨迹的初始时间分布$ q_ {loop}(x,p)$,表明这不能与量子状态相对应。最后,我们分析了爱因斯坦 - 波多尔斯基 - 罗森和贝尔非局部性。我们的结论是波功能和非局部性崩溃的模型,与三个弱的局部现实前提一致。我们推断出涉及放大变量因果关系的混合因果结构,通过显式模拟说明微观倒流如何可以解释测量和纠缠,而不会导致宏观层面上的层术。

In this paper, we show how quantum measurement and nonlocality can be explained consistently with macroscopic realism and no-signaling. We analyze a measurement of $\hat{x}$ on a system prepared in a superposition of eigenstates, with measurement modeled as amplification, realized by interacting the system with an amplifier. Deriving quantum stochastic path-integral theorems, we prove an equivalence between a phase-space probability distribution $Q(x,p)$ (which uniquely represents the quantum state) and stochastic trajectories for the amplified and attenuated variables, $x$ and $p$, that propagate backwards and forwards in time, respectively. For the superposition, but not the mixture, the backward and forward-propagating trajectories are connected by the initial-time conditional distribution $Q(p|x)$, leading to a causal loop. The joint densities for $x(t)$ and $p(t)$ yield $Q(x,p,t)$, confirming causal consistency. A feature is hidden noise associated with an eigenstate. Unlike the eigenvalue, this noise is not amplified. This motivates an ontological model for measurement, where the amplified amplitude x(t) gives the detected outcome, from which Born's rule follows. For macroscopic superpositions, we demonstrate consistency with macroscopic realism: Further, we evaluate the initial-time distribution $Q_{loop}(x,p)$ for the coupled trajectories conditioned on a given outcome, showing that this cannot correspond to a quantum state. Finally, we analyze Einstein-Podolsky-Rosen and Bell nonlocality. Our conclusion is a model for the collapse of the wave-function and nonlocality, consistent with three weak local realistic premises. We deduce a hybrid causal structure involving causal relations for amplified variables, demonstrating through explicit simulation how microscopic retrocausality can explain measurement and entanglement, without leading to retrocausality at a macroscopic level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源