论文标题

出现的浮动尺寸分布的理论框架:对数正态的情况

Theoretical framework for the emergent floe size distribution: the case for log-normality

论文作者

Montiel, Fabien, Mokus, Nicolas

论文摘要

海冰在大尺度上不是连续的和均匀的。它的形态本质上是离散的,并且由单个浮子制成。近年来,海冰模型纳入了这种水平异质性。该建模框架考虑了带有代表多个物理过程效果的强迫术语(FSD)的概率密度函数(FSD)的概率密度函数的进化方程。尽管进行了建模工作,但仍然存在一个关键问题:从所有强迫过程的集合中出现了什么FSD?长期以来,现场观察结果表明,FSD遵循功率定律,但是该结果尚未由模型或实验室实验重现。提出了FSD动力学的理论框架。海浪诱导的分裂进一步研究,重点是它如何影响FSD。最近的建模结果表明,进一步讨论了该过程的对数正态分布的一致出现。在浮动大小的数据集中还发现了对数正态性,该数据集最初是根据权力定律假设进行了分析的。然后,我们基于随机碎片理论提出了一个简单的FSD动力学随机过程,该过程可以预测对数正态性。因此,我们猜想出现的FSD遵循对数正态分布。

Sea ice is not continuous and homogeneous on large scales. Its morphology is inherently discrete and made of individual floes. In recent years, sea ice models have incorporated this horizontal heterogeneity. The modelling framework considers an evolution equation for the probability density function of the floe size distribution (FSD) with forcing terms that represent the effects of several physical processes. Despite the modelling effort, a key question remains: what is the FSD emerging from the collection of all forcing processes? Field observations have long suggested the FSD follows a power law, but this result has not been reproduced by models or laboratory experiments. The theoretical framework for FSD dynamics in response to physical forcings is presented. Wave-induced breakup is further examined with an emphasis on how it affects the FSD. Recent modelling results suggesting the consistent emergence of a lognormal distribution as a result of that process are further discussed. Log-normality is also found in a dataset of floe sizes, which was originally analysed under the power law hypothesis. We then propose a simple stochastic process of FSD dynamics, based on random fragmentation theory, that predicts log-normality. We therefore conjecture that the emergent FSD follows a lognormal distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源