论文标题
MMWave IAB网络的移动性知觉资源分配:一种多机构增强学习方法
Mobility-Aware Resource Allocation for mmWave IAB Networks: A Multi-Agent Reinforcement Learning Approach
论文作者
论文摘要
MMWaves已被设想为提供Gbps无线访问的有前途的方向。但是,它们容易受到高路径损失和阻塞的影响,而方向天线只能部分缓解哪些。这使MMWave网络覆盖范围限制,因此需要密集的部署。集成访问和回程(IAB)架构已成为网络致密化的成本效益解决方案。 MMWave IAB网络中的资源分配必须面临重大挑战,以应对繁重的时间动态,例如由用户移动性和移动障碍物阻塞引起的间歇性链接。这使得很难找到最佳和适应性解决方案。在本文中,利用问题的分布式结构,我们提出了一个多代理增强学习(MARL)框架,以通过流程路由和MMWave IAB网络中的链接计划来优化用户吞吐量,该网络以用户移动性和链接障碍物产生的链接破坏为特征。提出的方法隐含地捕获了环境动力学,协调干扰,并管理IAB继电器节点的缓冲水平。我们设计了不同的泥浆组件,考虑了全双工和半偶联IAB节点。此外,我们在在线培训框架中为RL代理提供了通信和协调方案,以解决实际系统的可行性问题。数值结果显示了所提出的方法的有效性。
MmWaves have been envisioned as a promising direction to provide Gbps wireless access. However, they are susceptible to high path losses and blockages, which directional antennas can only partially mitigate. That makes mmWave networks coverage-limited, thus requiring dense deployments. Integrated access and backhaul (IAB) architectures have emerged as a cost-effective solution for network densification. Resource allocation in mmWave IAB networks must face big challenges to cope with heavy temporal dynamics, such as intermittent links caused by user mobility and blockages from moving obstacles. This makes it extremely difficult to find optimal and adaptive solutions. In this article, exploiting the distributed structure of the problem, we propose a Multi-Agent Reinforcement Learning (MARL) framework to optimize user throughput via flow routing and link scheduling in mmWave IAB networks characterized by user mobility and link outages generated by moving obstacles. The proposed approach implicitly captures the environment dynamics, coordinates the interference, and manages the buffer levels of IAB relay nodes. We design different MARL components, considering full-duplex and half-duplex IAB-nodes. In addition, we provide a communication and coordination scheme for RL agents in an online training framework, addressing the feasibility issues of practical systems. Numerical results show the effectiveness of the proposed approach.