论文标题
蜂窝状晶格上的高吉拓扑绝缘子
Takagi Topological Insulator on the Honeycomb Lattice
论文作者
论文摘要
最近,已经积极研究了受$ pt $对称性保护的实际拓扑阶段。在两个维度上,相应的拓扑不变是惠特尼的Stiefel-Whitney编号。最近的一个理论进步是,在存在Sublattice对称性的情况下,Stiefel-Whitney数字可以等效地以高加吉的分解为例。拓扑不变剂产生了一种新颖的二阶拓扑绝缘子,具有奇数$ pt $相关的角零模式。在本文中,我们回顾了这种新颖的二阶拓扑绝缘子的元素,并通过蜂窝晶格上的简单模型演示了基本物理。
Recently, real topological phases protected by $PT$ symmetry have been actively investigated. In two dimensions, the corresponding topological invariant is the Stiefel-Whitney number. A recent theoretical advance is that in the presence of the sublattice symmetry, the Stiefel-Whitney number can be equivalently formulated in terms of Takagi's factorization. The topological invariant gives rise to a novel second-order topological insulator with odd $PT$-related pairs of corner zero modes. In this article, we review the elements of this novel second-order topological insulator, and demonstrate the essential physics by a simple model on the honeycomb lattice.