论文标题
能量水平统计的动力量子真实性
Dynamical quantum ergodicity from energy level statistics
论文作者
论文摘要
千古理论提供了经典动力学系统中混乱的严格数学描述,包括对厄贡层次结构的形式定义。量子系统的核心问题是量子混乱的核心问题,但是严格的量化量子概念仍然难以捉摸。与经典的沿着经典的层次结构密切相关是循环近似周期性转换的一个鲜为人知的概念[参见,例如,I。Cornfield,S。Fomin和Y. Sinai,Ergodic理论(Springer-Verlag New York,1982年)],该理论将任何“成真”系统映射到任何一个循环的元素上,可以在一个圆周上呈现圆周循环的元素,并构成了大量元素。本文表明,循环层状性概括为量子动力学系统,并提供了对量子性量像性的严格独立定义。它意味着构建正统基础的能力,其中量子动力学传递任何初始基础向量,以与每个其他基础向量具有足够大的重叠,以环状序列。事实证明,通过离散的能量特征状态的离散傅立叶变换获得了与所有此类量子循环排列的重叠最大化的基础。这将量子循环牙与能级统计数据联系起来。 Wigner-Dyson随机矩阵的水平统计数据通常与经验理由相关的量子混乱相关,被推导为这种一般关系的一种特殊情况。为了证明普遍性,我们证明了2D圆环上的非理性流是经典的和量子循环的,具有与Wigner-Dyson不同的光谱刚度。最后,我们激发了操作员的量子层次结构,并讨论了与特征态热化的连接。这项工作提供了一个通用框架,用于将一些严格的千古理论概念移植到量子动力学系统中。
Ergodic theory provides a rigorous mathematical description of chaos in classical dynamical systems, including a formal definition of the ergodic hierarchy. How ergodic dynamics is reflected in the energy levels and eigenstates of a quantum system is the central question of quantum chaos, but a rigorous quantum notion of ergodicity remains elusive. Closely related to the classical ergodic hierarchy is a less-known notion of cyclic approximate periodic transformations [see, e.g., I. Cornfield, S. Fomin, and Y. Sinai, Ergodic Theory (Springer-Verlag New York, 1982)], which maps any "ergodic" dynamical system to a cyclic permutation on a circle and arguably represents the most elementary form of ergodicity. This paper shows that cyclic ergodicity generalizes to quantum dynamical systems, and provides a rigorous observable-independent definition of quantum ergodicity. It implies the ability to construct an orthonormal basis, where quantum dynamics transports any initial basis vector to have a sufficiently large overlap with each of the other basis vectors in a cyclic sequence. It is proven that the basis, maximizing the overlap over all such quantum cyclic permutations, is obtained via the discrete Fourier transform of the energy eigenstates. This relates quantum cyclic ergodicity to energy level statistics. The level statistics of Wigner-Dyson random matrices, usually associated with quantum chaos on empirical grounds, is derived as a special case of this general relation. To demonstrate generality, we prove that irrational flows on a 2D torus are classical and quantum cyclic ergodic, with spectral rigidity distinct from Wigner-Dyson. Finally, we motivate a quantum ergodic hierarchy of operators and discuss connections to eigenstate thermalization. This work provides a general framework for transplanting some rigorous concepts of ergodic theory to quantum dynamical systems.