论文标题

分形式磁流失动力学

Fracton magnetohydrodynamics

论文作者

Qi, Marvin, Hart, Oliver, Friedman, Aaron J., Nandkishore, Rahul, Lucas, Andrew

论文摘要

我们将最新的关于具有全局多极对称性的流体动力学(称为“分形式流体动力学”)扩展到了测量多极对称性的系统。我们将后者称为“分面磁水动力学”,类似于传统的磁流失动力学(MHD),该动力学(MHD)控制了用量的电荷保护系统。我们表明,fracton MHD自然源于麦克斯韦的较高级别的方程,而在具有某种形式的对称性的系统中,构成了某些限制。虽然我们专注于实现扩散的MHD的“最小”高级概括,但我们的方法也可以用于识别其他更外来的流体动力学理论(例如,具有磁性亚扩散)。与MHD的半显微镜衍生物相反,我们的方法通过识别相应的更高形式的对称性来阐明流体动力模式的起源。即使半微观方程不再提供对系统的准确描述,流体力学模式也可能持续存在。

We extend recent work on hydrodynamics with global multipolar symmetries -- known as "fracton hydrodynamics" -- to systems in which the multipolar symmetries are gauged. We refer to the latter as "fracton magnetohydrodynamics", in analogy to conventional magnetohydrodynamics (MHD), which governs systems with gauged charge conservation. We show that fracton MHD arises naturally from higher-rank Maxwell's equations and in systems with one-form symmetries obeying certain constraints; while we focus on "minimal" higher-rank generalizations of MHD that realize diffusion, our methods may also be used to identify other, more exotic hydrodynamic theories (e.g., with magnetic subdiffusion). In contrast to semi-microscopic derivations of MHD, our approach elucidates the origin of the hydrodynamic modes by identifying the corresponding higher-form symmetries. Being rooted in symmetries, the hydrodynamic modes may persist even when the semi-microscopic equations no longer provide an accurate description of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源