论文标题

使用测量引起的纠缠探测符号结构

Probing sign structure using measurement-induced entanglement

论文作者

Lin, Cheng-Ju, Ye, Weicheng, Zou, Yijian, Sang, Shengqi, Hsieh, Timothy H.

论文摘要

量子状态的符号结构与物质的量子阶段紧密相关,但是检测幅度的细粒性能是微妙的。在这里,我们用作诊断测量引起的纠缠(MIE):在测量系统的其余部分之后产生的平均纠缠。我们建议,对于一个无标志状态,MIE在无标志的基础上测量后的衰减效果不如在测量前的状态相关性慢。具体而言,我们证明了MIE是由无标志稳定剂状态(基本上是CSS代码)的相互信息的上限,该信息在描述稳定器系统中测量诱导的临界点的结构性场理论的缩放维度之间建立了结合。我们还表明,对于无标志的QUBIT波函数,两个量子位之间的MIE在上部由简单的两点相关函数界定,并且我们在一维系统的几个关键基础状态下验证了我们的建议,包括横向场和三个临界模型。相反,对于具有符号结构的状态,可能会违反这种界限,正如我们在涉及HAAR或CLIFFORD随机单位和测量值的关键混合电路中所说明的,以及无间隙对称性保护的拓扑状态。

The sign structure of quantum states is closely connected to quantum phases of matter, yet detecting such fine-grained properties of amplitudes is subtle. Here we employ as a diagnostic measurement-induced entanglement (MIE): the average entanglement generated between two parties after measuring the rest of the system. We propose that for a sign-free state, the MIE upon measuring in the sign-free basis decays no slower than correlations in the state before measurement. Concretely, we prove that MIE is upper bounded by mutual information for sign-free stabilizer states (essentially CSS codes), which establishes a bound between scaling dimensions of conformal field theories describing measurement-induced critical points in stabilizer systems. We also show that for sign-free qubit wavefunctions, MIE between two qubits is upper bounded by a simple two-point correlation function, and we verify our proposal in several critical ground states of one-dimensional systems, including the transverse field and tri-critical Ising models. In contrast, for states with sign structure, such bounds can be violated, as we illustrate in critical hybrid circuits involving both Haar or Clifford random unitaries and measurements, and gapless symmetry-protected topological states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源