论文标题
从地面数据预测热电子自由能
Predicting hot-electron free energies from ground-state data
论文作者
论文摘要
机器学习电位通常在基态oppenheimer能量表面上进行训练,该元素仅取决于原子位置而不取决于模拟温度。这无视热激发电子的效果,这在金属中很重要,对于描述温暖的物质至关重要。这些效果的准确物理描述要求该核在温度依赖性电子自由能上移动。我们提出了一种在任意电子温度下使用地下态计算中的数据在任意电子温度下获得该自由能的机器学习预测的方法,避免了训练温度依赖性电位的需求,并在气体巨头和棕色矮人的核心条件下对金属液体氢进行基准测试。这项工作证明了混合方案的优势,这些方案使用物理考虑来结合机器学习预测,从而为开发类似方法的开发提供了蓝图,从而通过消除物理学和数据驱动方法之间的障碍来扩展原子建模的覆盖范围。
Machine-learning potentials are usually trained on the ground-state, Born-Oppenheimer energy surface, which depends exclusively on the atomic positions and not on the simulation temperature. This disregards the effect of thermally-excited electrons, that is important in metals, and essential to the description of warm dense matter. An accurate physical description of these effects requires that the nuclei move on a temperature-dependent electronic free energy. We propose a method to obtain machine-learning predictions of this free energy at an arbitrary electron temperature using exclusively training data from ground-state calculations, avoiding the need to train temperature-dependent potentials, and benchmark it on metallic liquid hydrogen at the conditions of the core of gas giants and brown dwarfs. This work demonstrates the advantages of hybrid schemes that use physical consideration to combine machine-learning predictions, providing a blueprint for the development of similar approaches that extend the reach of atomistic modelling by removing the barrier between physics and data-driven methodologies.