论文标题

Szemerédi定理的一种定量绑定,以使一个复杂性一个多项式进程,超过$ \ mathbb {z}/n \ mathbb {z} $

A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$

论文作者

Leng, James

论文摘要

令$ n $为一个大的prime,$ p,q \ in \ mathbb {z} [x] $两个线性独立的多项式,$ p(0)= q(0)= 0 $。我们表明,如果一个子集$ a $ a $ \ mathbb {z}/n \ mathbb {z} $缺少$ $(x,x,x + p(y),x + q(y),x + p(y),x + p(y) + q(y) + q(y))$的进度\ le o \ left(\ frac {n} {\ log _ {(o(o(1))}(n)} \ right)$$其中$ \ log_ {c}(c}(n)$是顺序$ c $的迭代对数(例如,为了建立这种结合,我们将Peluse(2018)的降低论点调整为二次傅立叶分析设置,以在上述进展的真实复杂性上获得定量界限。我们的方法还表明,对于大量的多项式渐进式,如果可以在这些进度的真实复杂性上建立多项式型界限,那么人们可以在Szemerédi的定理上建立多项式型的界限,以实现这种类型的多项式进程。

Let $N$ be a large prime and $P, Q \in \mathbb{Z}[x]$ two linearly independent polynomials with $P(0) = Q(0) = 0$. We show that if a subset $A$ of $\mathbb{Z}/N\mathbb{Z}$ lacks a progression of the form $(x, x + P(y), x + Q(y), x + P(y) + Q(y))$, then $$|A| \le O\left(\frac{N}{\log_{(O(1))}(N)}\right)$$ where $\log_{C}(N)$ is an iterated logarithm of order $C$ (e.g., $\log_{2}(N) = \log\log(N)$). To establish this bound, we adapt Peluse's (2018) degree lowering argument to the quadratic Fourier analysis setting to obtain quantitative bounds on the true complexity of the above progression. Our method also shows that for a large class of polynomial progressions, if one can establish polynomial-type bounds on the true complexity of those progressions, then one can establish polynomial-type bounds on Szemerédi's theorem for that type of polynomial progression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源