论文标题
差异自动编码器杠杆MMSE通道估计
Variational Autoencoder Leveraged MMSE Channel Estimation
论文作者
论文摘要
我们建议利用变异自动编码器(VAE)进行数据驱动的通道估计。基本的真实和未知的通道分布由VAE建模为有条件的高斯分布,以新颖的方式被相应的第一阶和二阶条件矩参数化。结果,可以观察到其变体中的线性最小均方误差(LMMSE)估计器在VAE的潜在样本上近似于最佳的MSE估计器。此外,我们认为基于VAE的通道估计器如何近似MMSE通道估计器。我们提出了三种VAE估计器的三种变体,它们在训练和估计过程中使用的数据有所不同。首先,我们表明,在估计过程中,在VAE的输入处,鉴于完全已知的通道状态信息,这是不切实际的,我们获得了一个可以作为估计情况的基准结果的估计器。然后,我们提出了实际上可行的方法,在训练阶段仅需要或根本不需要的渠道状态信息。与其他相关的通道估计方法相比,3GPP和Quadriga通道数据的仿真结果证明了实际方法的性能丧失和VAE方法的优越性。
We propose to utilize a variational autoencoder (VAE) for data-driven channel estimation. The underlying true and unknown channel distribution is modeled by the VAE as a conditional Gaussian distribution in a novel way, parameterized by the respective first and second order conditional moments. As a result, it can be observed that the linear minimum mean square error (LMMSE) estimator in its variant conditioned on the latent sample of the VAE approximates an optimal MSE estimator. Furthermore, we argue how a VAE-based channel estimator can approximate the MMSE channel estimator. We propose three variants of VAE estimators that differ in the data used during training and estimation. First, we show that given perfectly known channel state information at the input of the VAE during estimation, which is impractical, we obtain an estimator that can serve as a benchmark result for an estimation scenario. We then propose practically feasible approaches, where perfectly known channel state information is only necessary in the training phase or is not needed at all. Simulation results on 3GPP and QuaDRiGa channel data attest a small performance loss of the practical approaches and the superiority of our VAE approaches in comparison to other related channel estimation methods.