论文标题
Sur la猜想de tate pour les diviseurs
Sur la conjecture de Tate pour les diviseurs
论文作者
论文摘要
我们证明,在有限生成的字段上,Codimension $ 1 $中的泰特猜想是从同一猜想的Prime子领域的同一猜想中进行的。在积极的特征中,这是由于de jong- $ \ mathbf {f} _p $和Ambrosi,并将其减少到$ \ mathbf {f} _p $。我们提供的证明与Ambrosi的证据不同,Ambrosi的特征$ 0 $也有效;超过$ \ mathbf {q} $,使用lefschetz的$(1,1)$定理的简单参数从一个简单的参数中进行了减少。
We prove that the Tate conjecture in codimension $1$ over a finitely generated field follows from the same conjecture for surfaces over its prime subfield. In positive characteristic, this is due to de Jong--Morrow over $\mathbf{F}_p$ and to Ambrosi for the reduction to $\mathbf{F}_p$. We give a different proof than Ambrosi's, which also works in characteristic $0$; over $\mathbf{Q}$, the reduction to surfaces follows from a simple argument using Lefschetz's $(1,1)$ theorem.