论文标题

Ramanujan的POSET版本导致Eulerian数字和Zeta值

A poset version of Ramanujan results on Eulerian numbers and zeta values

论文作者

Dolores-Cuenca, Eric, Mendoza-Cortes, Jose L.

论文摘要

我们探索有限posets及其代数的出手。我们使用订单的多面体研究Zeta值的组合特性。通过概括Zeta价值身份的家族,我们证明了这种方法的适用性。此外,我们还提供了Ramanujan关于Eulerian数字属性的一些结果的新证明,将他的工作解释为处理串联的遗传分离点的代数结构。最后,我们在发现和zeta值的线性独立性之间建立了联系。

We explore the operad of finite posets and its algebras. We use order polytopes to investigate the combinatorial properties of zeta values. By generalizing a family of zeta value identities, we demonstrate the applicability of this approach. In addition, we offer new proofs of some of Ramanujan's results on the properties of Eulerian numbers, interpreting his work as dealing with series inheriting the algebraic structure of disjoint unions of points. Finally, we establish a connection between our findings and the linear independence of zeta values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源