论文标题
多重的免疫荧光大脑图像分析使用自我监督的双损坏自适应蒙版自动编码器
Multiplexed Immunofluorescence Brain Image Analysis Using Self-Supervised Dual-Loss Adaptive Masked Autoencoder
论文作者
论文摘要
可靠的大规模细胞检测和分割是理解大脑生物过程的基本第一步。大规模表型细胞的能力可以加速临床前药物评估和系统水平的脑组织学研究。深度学习的令人印象深刻的进步为细胞图像检测和分割提供了实用的解决方案。不幸的是,对细胞进行分类并描绘培训深层网络的边界是一个昂贵的过程,需要熟练的生物学家。本文介绍了一种新型的自我监督双损坏自适应蒙面自动编码器(DAMA),用于从多重免疫荧光脑图像中学习丰富的特征。 Dama的目标函数最大程度地减少了像素级重建和特征级回归中的条件熵。与基于随机图像掩盖策略的现有自我监督学习方法不同,Dama采用了一种新颖的自适应掩码采样策略来最大程度地提高相互信息并有效地学习脑细胞数据。据我们所知,这是为多重免疫荧光大脑图像开发自我监督的学习方法的第一个努力。我们的广泛实验表明,Dama具有启用卓越的细胞检测,分割和分类性能,而无需进行许多注释。
Reliable large-scale cell detection and segmentation is the fundamental first step to understanding biological processes in the brain. The ability to phenotype cells at scale can accelerate preclinical drug evaluation and system-level brain histology studies. The impressive advances in deep learning offer a practical solution to cell image detection and segmentation. Unfortunately, categorizing cells and delineating their boundaries for training deep networks is an expensive process that requires skilled biologists. This paper presents a novel self-supervised Dual-Loss Adaptive Masked Autoencoder (DAMA) for learning rich features from multiplexed immunofluorescence brain images. DAMA's objective function minimizes the conditional entropy in pixel-level reconstruction and feature-level regression. Unlike existing self-supervised learning methods based on a random image masking strategy, DAMA employs a novel adaptive mask sampling strategy to maximize mutual information and effectively learn brain cell data. To the best of our knowledge, this is the first effort to develop a self-supervised learning method for multiplexed immunofluorescence brain images. Our extensive experiments demonstrate that DAMA features enable superior cell detection, segmentation, and classification performance without requiring many annotations.