论文标题
使用不连续的Galerkin方法,用于颗粒状雪崩流的野蛮锤子方程的数值解决方案
Numerical Solution of the Savage-Hutter Equations for Granular Avalanche Flow using the Discontinuous Galerkin Method
论文作者
论文摘要
Savage-Hutter(SH)方程是一个非线性偏微分方程的双曲线系统,描述了深度和深度平均速度的时间演化,用于建模倾斜表面上颗粒材料的浅层层的雪崩。这些方程式承认发生了冲击波和真空正面的发生,就像在具有特殊的颗粒状材料的特殊安息状态的同时一样。在本文中,我们为一维SH方程的数值解开发了三阶runge-kutta不连续的Galerkin(RKDG)方法。我们采用TVD坡度限制器来抑制不连续性附近的数值振荡。我们为雪崩前部和床摩擦提供数值处理,以实现颗粒状材料的平衡平衡。在各种内部和床摩擦角和斜坡角下,倾斜的倾斜且平稳过渡到水平平面的无内聚干颗粒材料的雪崩的数值结果,以显示当前数值方案的性能。
The Savage-Hutter (SH) equations are a hyperbolic system of nonlinear partial differential equations describing the temporal evolution of the depth and depth averaged velocity for modelling the avalanche of a shallow layer of granular materials on an inclined surface. These equations admit the occurrence of shock waves and vacuum fronts as in the shallow-water equations while possessing the special reposing state of granular material. In this paper, we develop a third-order Runge-Kutta discontinuous Galerkin (RKDG) method for the numerical solution of the one-dimensional SH equations. We adopt a TVD slope limiter to suppress numerical oscillations near discontinuities. And we give numerical treatments for the avalanche front and for the bed friction to achieve the well-balanced reposing property of granular materials. Numerical results of the avalanche of cohesionless dry granular materials down an inclined and smoothly transitioned to horizontal plane under various internal and bed friction angles and slope angles are given to show the performance of the present numerical scheme.