论文标题

具有可调复合阶段的电路中的双曲物物质

Hyperbolic Matter in Electrical Circuits with Tunable Complex Phases

论文作者

Chen, Anffany, Brand, Hauke, Helbig, Tobias, Hofmann, Tobias, Imhof, Stefan, Fritzsche, Alexander, Kießling, Tobias, Stegmaier, Alexander, Upreti, Lavi K., Neupert, Titus, Bzdušek, Tomáš, Greiter, Martin, Thomale, Ronny, Boettcher, Igor

论文摘要

弯曲空间在现代物理学的许多领域都起着基本作用,从宇宙学长度尺度到与量子信息和量子重力相关的亚原子结构。在桌面实验中,可以使用双曲线晶格模拟呈负弯曲的空间。在这里,我们通过依靠复杂相相电路元件的拓扑结构网络介绍并实验实现双曲线物质作为拓扑状态的范式。该实验基于双曲线理论,我们在这里在有限双曲线晶格的前所未有的数值调查中确认。我们实施双曲线石墨烯,作为拓扑非平凡双曲线物质的一个例子。我们的工作奠定了阶段,以实现更复杂的双曲线物质形式,以挑战我们在弯曲空间中建立的物理学理论,而这里开发的可调复合相元素可能是对具有拓扑基础状态的各种汉密尔顿人的未来实验模拟的关键成分。

Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element. The experiment is based on hyperbolic band theory that we confirm here in an unprecedented numerical survey of finite hyperbolic lattices. We implement hyperbolic graphene as an example of topologically nontrivial hyperbolic matter. Our work sets the stage to realize more complex forms of hyperbolic matter to challenge our established theories of physics in curved space, while the tunable complex-phase element developed here can be a key ingredient for future experimental simulation of various Hamiltonians with topological ground states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源