论文标题

提升到BMS

Boosting to BMS

论文作者

Bagchi, Arjun, Banerjee, Aritra, Muraki, Hisayoshi

论文摘要

Bondi-Metzner-sachs(BMS)对称性或等效的全条状Carroll对称性与空歧管具有内在相关性,并且可以在二维中获得二维($ 2D $)Relativistic Conformantem poldemanm algeemal Algebra的{Ö} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {ü} n {Ö} n {Ö} n {Ö} n {Ö)。我们没有进行收缩,而是在本文中证明了如何通过无限提升或坐标上的线性变换来实现对称性的这种变形。从无效字​​符串的世界表格理论中汲取明确的提示,我们表明该系统等同于在哈密顿式中添加当前流动的变形术语。随着该变形项的强度达到临界值,经典的对称代数从Virasoro的两个副本流向BMS代数。我们进一步探讨了CFT坐标不对称转化的情况,而退化的限制导致了手性理论。

Bondi-Metzner-Sachs (BMS) symmetries, or equivalently Conformal Carroll symmetries, are intrinsically associated to null manifolds and in two dimensions can be obtained as an In{ö}n{ü}-Wigner contraction of the two-dimensional ($2d$) relativistic conformal algebra. Instead of performing contractions, we demonstrate in this paper how this transmutation of symmetries can be achieved by infinite boosts or degenerate linear transformations on coordinates. Taking explicit cues from the worldsheet theory of null strings, we show boosting the system is equivalent to adding a current-current deformation term to the Hamiltonian. As the strength of this deformation term reaches a critical value, the classical symmetry algebra "flows" from two copies of Virasoro to the BMS algebra. We further explore the situation where the CFT coordinates are asymmetrically transformed, and degenerate limits lead to chiral theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源