论文标题
两步的四阶修改后的显式欧拉/曲柄 - 尼科尔森方法的无条件稳定性,用于求解时间变量的分数移动移动 - immobile phosspersion方程
Unconditional Stability Of A Two-Step Fourth-Order Modified Explicit Euler/Crank-Nicolson Approach For Solving Time-Variable Fractional Mobile-Immobile Advection-Dispersion Equation
论文作者
论文摘要
本文考虑了两步的四阶修改显式欧拉/曲柄 - 尼科尔森数值方法,用于求解适合初始和边界条件的时间变量分数移动移动 - iMmobile-immobile向上分散模型。在$ l^{\ infty}(0,t; l^{2})$ norm中,深入分析了新方法的稳定性和错误估计。理论研究表明,所提出的技术是无条件稳定的,订单$ o(k+h^{4})$,其中$ h $和$ k $分别是空间步骤和时间步长。该结果表明,两步的四阶配方比在文献中针对所考虑的问题广泛研究的广泛数值方案更有效。进行数值实验以验证开发算法的无条件稳定性和收敛速率。
This paper considers a two-step fourth-order modified explicit Euler/Crank-Nicolson numerical method for solving the time-variable fractional mobile-immobile advection-dispersion model subjects to suitable initial and boundary conditions. Both stability and error estimates of the new approach are deeply analyzed in the $L^{\infty}(0,T;L^{2})$-norm. The theoretical studies show that the proposed technique is unconditionally stable with convergence of order $O(k+h^{4})$, where $h$ and $k$ are space step and time step, respectively. This result indicate that the two-step fourth-order formulation is more efficient than a broad range of numerical schemes widely studied in the literature for the considered problem. Numerical experiments are performed to verify the unconditional stability and convergence rate of the developed algorithm.