论文标题

通过随机迭代的球形 - 卷卷曲知情的拖拉图滤波来评估流线的合理性

Assessing Streamline Plausibility Through Randomized Iterative Spherical-Deconvolution Informed Tractogram Filtering

论文作者

Hain, Antonia, Jörgens, Daniel, Moreno, Rodrigo

论文摘要

拖拉学已成为大脑连通性研究中必不可少的一部分。但是,它目前面临可靠性的问题。特别是,在最先进的拖拉术方法中产生的拖拉图中的大量神经纤维重建(流线)在解剖学上是不可思议的。为了解决此问题,已经开发了拖拉图过滤方法,以在后处理步骤中删除故障连接。这项研究仔细研究了一种这样的方法,即\ textIt {球形 - 卷卷式通知术语}(sift),该方法使用全局优化方法来改善过滤后剩余的流线与基础扩散磁共振成像数据之间的一致性。 SIFT不适合判断单个流线的合理性,因为其结果取决于周围段落图的大小和组成。为了解决此问题,我们建议将SIFT应用于随机选择的片段图子集,以检索每个流线的多次评估。这种方法可以识别具有非常一致的过滤结果的流线,这被用作训练分类器的伪基础真相。训练有素的分类器能够以高于80%的精度来区分所获得的合理和难以置信的流线。纸张中使用的软件代码和分类器的预处理权重是通过github存储库https://github.com/djoerch/randomisation_filtering免费分发的。

Tractography has become an indispensable part of brain connectivity studies. However, it is currently facing problems with reliability. In particular, a substantial amount of nerve fiber reconstructions (streamlines) in tractograms produced by state-of-the-art tractography methods are anatomically implausible. To address this problem, tractogram filtering methods have been developed to remove faulty connections in a postprocessing step. This study takes a closer look at one such method, \textit{Spherical-deconvolution Informed Filtering of Tractograms} (SIFT), which uses a global optimization approach to improve the agreement between the remaining streamlines after filtering and the underlying diffusion magnetic resonance imaging data. SIFT is not suitable to judge the plausibility of individual streamlines since its results depend on the size and composition of the surrounding tractogram. To tackle this problem, we propose applying SIFT to randomly selected tractogram subsets in order to retrieve multiple assessments for each streamline. This approach makes it possible to identify streamlines with very consistent filtering results, which were used as pseudo ground truths for training classifiers. The trained classifier is able to distinguish the obtained groups of plausible and implausible streamlines with accuracy above 80%. The software code used in the paper and pretrained weights of the classifier are distributed freely via the Github repository https://github.com/djoerch/randomised_filtering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源