论文标题
Chernoff估算的注释
Notes on the Chernoff estimate
论文作者
论文摘要
本注释的目的是检查与Chernoff估计有关的以下问题:(1)对于Banach空间上的收缩,我们修改了$ \ sqrt {n} $ - 估计并将其应用于Chernoff Product formula for $ C_0 $ -Semogeups的证明\ c_0 $ - semogeups in \ fextit fextit {fextit {strong} stromt {strong}运营商的拓扑。 (2)我们使用{概率}方法的想法,证明了强大的操作员拓扑中的Chernoff估算值,将其提升到\ textIt {operator-norm}估计值\ textit {quasasi-tectorial} contraction contractiate contractiate semogroups。 (3)运算符 - Chernoff估计用于证明\ textIt {dunford-segal}近似值的操作员 - 融合的{quasi sectorial}收缩半群。
The purpose of the present notes is to examine the following issues related to the the Chernoff estimate: (1) For contractions on a Banach space we modify the $\sqrt{n}$-estimate and apply it in the proof of the Chernoff product formula for $C_0$-semigroups in the \textit{strong} operator topology. (2) We use the idea of a {probabilistic} approach, proving the Chernoff estimate in the strong operator topology, to uplift it to the \textit{operator-norm} estimate for \textit{quasi-sectorial} contraction semigroups. (3) The operator-norm Chernoff estimate is applied to {quasi-sectorial} contraction semigroups for proving the operator-norm convergence of the \textit{Dunford-Segal} approximants.