论文标题

使用计算机视觉进行精确授粉的空间监测和昆虫行为分析

Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision for Precision Pollination

论文作者

Ratnayake, Malika Nisal, Amarathunga, Don Chathurika, Zaman, Asaduz, Dyer, Adrian G., Dorin, Alan

论文摘要

昆虫是农作物的最重要的全球传粉媒介,在维持自然生态系统的可持续性方面发挥了关键作用。因此,昆虫授粉监测和管理对于改善农作物的生产和粮食安全至关重要。计算机视觉促进的授粉媒介监视可以加强使用手动方法可行的数据收集。它生成的新数据可能会提供对昆虫分布的详细理解,并促进足以预测其授粉功效和基础精确授粉的细粒分析。当前的计算机视觉促进复杂室外环境中的昆虫跟踪受到空间覆盖范围的限制,并且通常限制在单一昆虫物种上。这限制了它与农业的相关性。因此,在本文中,我们介绍了一种新型系统,以促进无标记的数据捕获,以捕获昆虫计数,昆虫运动跟踪,行为分析和跨大型农业地区的授粉预测。我们的系统包括边缘计算多点视频录制,离线自动多种昆虫计数,跟踪和行为分析。我们在商业浆果农场上实施和测试我们的系统,以证明其功能。我们的系统成功地跟踪了四种昆虫品种,该品种在多核内的九个监测站中获得了每种品种高于0.8的F-评分。该系统使关键指标的计算能够评估每种昆虫品种的相对授粉影响。随着这一技术进步,可以实现精确授粉的详细数据收集。这对于告知种植者和养蜂家管理农作物授粉非常重要,因为它允许以数据为导向的决策来改善粮食生产和粮食安全。

Insects are the most important global pollinator of crops and play a key role in maintaining the sustainability of natural ecosystems. Insect pollination monitoring and management are therefore essential for improving crop production and food security. Computer vision facilitated pollinator monitoring can intensify data collection over what is feasible using manual approaches. The new data it generates may provide a detailed understanding of insect distributions and facilitate fine-grained analysis sufficient to predict their pollination efficacy and underpin precision pollination. Current computer vision facilitated insect tracking in complex outdoor environments is restricted in spatial coverage and often constrained to a single insect species. This limits its relevance to agriculture. Therefore, in this article we introduce a novel system to facilitate markerless data capture for insect counting, insect motion tracking, behaviour analysis and pollination prediction across large agricultural areas. Our system is comprised of edge computing multi-point video recording, offline automated multispecies insect counting, tracking and behavioural analysis. We implement and test our system on a commercial berry farm to demonstrate its capabilities. Our system successfully tracked four insect varieties, at nine monitoring stations within polytunnels, obtaining an F-score above 0.8 for each variety. The system enabled calculation of key metrics to assess the relative pollination impact of each insect variety. With this technological advancement, detailed, ongoing data collection for precision pollination becomes achievable. This is important to inform growers and apiarists managing crop pollination, as it allows data-driven decisions to be made to improve food production and food security.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源