论文标题
KEMP:基于密钥帧的长期轨迹预测的基于密钥帧的层次端到端深层模型
KEMP: Keyframe-Based Hierarchical End-to-End Deep Model for Long-Term Trajectory Prediction
论文作者
论文摘要
预测道路代理的未来轨迹是自动驾驶的关键任务。最近基于目标的轨迹预测方法,例如Densetnt和Pecnet,在公共数据集上的预测任务上表现出良好的性能。但是,它们通常需要复杂的目标选择算法和优化。在这项工作中,我们提出了Kemp,这是一个轨迹预测的层次端到端深度学习框架。我们框架的核心是基于密钥帧的轨迹预测,其中关键帧是轨迹的代表性状态。肯普(Kemp)首先预测在道路上下条件下的关键框架,然后填补以关键框架和道路上下文为条件的中间状态。在我们的一般框架下,目标条件的方法是特殊情况,其中关键帧的数量等于一个。与目标条件的方法不同,我们的关键帧预测器是自动学习的,并且不需要手工制作的目标选择算法。我们在公共基准测试中评估了我们的模型,我们的模型在Waymo Open Motion数据集排行榜上排名第一(截至2021年9月1日)。
Predicting future trajectories of road agents is a critical task for autonomous driving. Recent goal-based trajectory prediction methods, such as DenseTNT and PECNet, have shown good performance on prediction tasks on public datasets. However, they usually require complicated goal-selection algorithms and optimization. In this work, we propose KEMP, a hierarchical end-to-end deep learning framework for trajectory prediction. At the core of our framework is keyframe-based trajectory prediction, where keyframes are representative states that trace out the general direction of the trajectory. KEMP first predicts keyframes conditioned on the road context, and then fills in intermediate states conditioned on the keyframes and the road context. Under our general framework, goal-conditioned methods are special cases in which the number of keyframes equal to one. Unlike goal-conditioned methods, our keyframe predictor is learned automatically and does not require hand-crafted goal-selection algorithms. We evaluate our model on public benchmarks and our model ranked 1st on Waymo Open Motion Dataset Leaderboard (as of September 1, 2021).