论文标题

复合信息瓶颈前景

The Compound Information Bottleneck Outlook

论文作者

Dikshtein, Michael, Weinberger, Nir, Shamai, Shlomo

论文摘要

我们制定和分析复合信息瓶颈编程。在此问题中,Markov链$ \ MATHSF {X} \ MATHSF {Y} \ RIGHTARROW \ MATHSF {Z} $是使用固定的边缘分布$ \ Mathsf {p} _ {p} _ {以及$ \ mathsf {x} $和$ \ mathsf {z} $之间的共同信息,以最大程度地提高$ \ mathsf {z} $的条件概率,从给定类别中,在\ textit contectit {fore textit {the Textit copeion { $(\ Mathsf {x},\ Mathsf {y})$来自其他类。我们考虑了基于以下极端的几个类:相互信息;最小相关性;总变异;和相对熵类。我们为此问题的特定实例提供值,边界和各种特征:二进制对称情况,标量高斯情况,矢量高斯病例和对称模量添加的情况。最后,对于一般情况,我们提出了一种类型的交替迭代算法,以找到对此问题的一致解决方案。

We formulate and analyze the compound information bottleneck programming. In this problem, a Markov chain $ \mathsf{X} \rightarrow \mathsf{Y} \rightarrow \mathsf{Z} $ is assumed with fixed marginal distributions $\mathsf{P}_{\mathsf{X}}$ and $\mathsf{P}_{\mathsf{Y}}$, and the mutual information between $ \mathsf{X} $ and $ \mathsf{Z} $ is sought to be maximized over the choice of conditional probability of $\mathsf{Z}$ given $\mathsf{Y}$ from a given class, under the \textit{worst choice} of the joint probability of the pair $(\mathsf{X},\mathsf{Y})$ from a different class. We consider several classes based on extremes of: mutual information; minimal correlation; total variation; and the relative entropy class. We provide values, bounds, and various characterizations for specific instances of this problem: the binary symmetric case, the scalar Gaussian case, the vector Gaussian case and the symmetric modulo-additive case. Finally, for the general case, we propose a Blahut-Arimoto type of alternating iterations algorithm to find a consistent solution to this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源