论文标题

在功能字段上尖锐自动形态表示的循环基础变化

Cyclic base change of cuspidal automorphic representations over function fields

论文作者

Böckle, Gebhard, Feng, Tony, Harris, Michael, Khare, Chandrashekhar, Thorne, Jack A.

论文摘要

让$ g $是全球功能字段$ k $的分裂半简单组。考虑到满足技术假设的$ g $的cuspidal自动形态表示$π$π$,我们证明,对于几乎所有的质量$ \ ell $,沿任何$ \ mathbb {z}/\ ell \ ell \ ell \ mathbb {z} $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ \ mathbb {z}/\ mathbb {z}/\ mathbb {z}/\ mathbb {z}/\ mathbb {z}/\ mathbb {z} $ k $ k $ k $ k $ k $ k $的基本更改的提升。我们的证明不依赖任何痕量公式。取而代之的是,它基于模块化提升定理,以及史密斯理论的论点,以获得残留表示的基础变化。作为一个应用程序,我们还证明,对于本地函数字段$ f $上的任何分裂的半胶合组$ g $,几乎所有Primes $ \ ell $,$ G(f)$的任何不可允许的可允许的代表都允许沿任何$ \ MATHBB {z}/\ ell \ ell \ ell \ ell \ ell \ althbb {z} $ f $ f $ f $ f $。最后,我们针对称为Toral SuperCuspidal表示形式的一类表示,更明确地表征了本地基础更改。

Let $G$ be a split semi-simple group over a global function field $K$. Given a cuspidal automorphic representation $Π$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $Π$ along any $\mathbb{Z}/\ell\mathbb{Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on modularity lifting theorems, together with a Smith theory argument to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb{Z}/\ell\mathbb{Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of representations called toral supercuspidal representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源