论文标题
基于图形神经网络和基于变压器的XANES数据分析方法
A graph neural network and transformer based approach to XANES data analyis
论文作者
论文摘要
X射线吸收光谱(XAS)是表征系统的原子尺度三维局部结构的必不可少的工具,其中Xanes是反映三维结构的最重要的能量区域。但是,对XANES的三维结构进行定量分析,需要用户对结构信息有深入的理解和准确的判断,并总结了几个结构性参数,这通常很难实现。在这项工作中,我们构建了\ textbf {物理信息图神经网络}和\ textbf {变形金刚}模型,用于从输入三维结构中计算XANE;我们根据XAS的物理含义提高模型的效率;然后,我们将模型和优化算法结合起来,以符合给定系统的三维结构。此方法不需要用户汇总结构参数,具有较大的应用范围。它可以应用于固体材料的三维结构分析,对于能量和催化领域的结构功能关系的研究具有积极的意义。此外,预计该方法将发展为XAS相关束线的在线三维结构分析方法。
X-ray absorption spectroscopy (XAS) is an indispensable tool to characterize the atomic-scale three-dimensional local structure of the system, in which XANES is the most important energy region to reflect the three-dimensional structure. However quantitative analysis of three-dimensional structure from XANES requires users to have a deep understanding and accurate judgment of structural information and summarize several structural parameters, which is often difficult to achieve. In this work, We construct \textbf{physics-informed Graph neural network} and \textbf{Transformer} models for calculating XANES from the input three-dimensional structure; we improve the efficiency of the model based on the physical meaning of XAS; then we combine the model and optimization algorithm to fit the three-dimensional structure of given system. This method does not require users to summarize the structural parameters, has wide application range. It can be applied to the three-dimensional structure analysis of solid materials and has positive significance for the study of structure-function relationship in the fields of energy and catalysis. In addition, this method is expected to be developed into an online three-dimensional structure analysis method for XAS related beamlines.