论文标题

部分可观测时空混沌系统的无模型预测

Do You Think You Can Hold Me? The Real Challenge of Problem-Space Evasion Attacks

论文作者

Berger, Harel, Dvir, Amit, Hajaj, Chen, Ronen, Rony

论文摘要

Android恶意软件是虚拟世界中一种传播的疾病。反病毒和检测系统不断进行补丁和更新,以防止这些威胁。恶意软件检测中的大多数最新方法使用机器学习(ML)。反对检测系统的强大努力,提高\ emph {逃避攻击},在那里对手会改变其目标样本,从而将它们错误地分类为良性。本文考虑了两种逃避攻击:功能空间和问题空间。 \ emph {功能空间}攻击考虑一个对手,他操纵ML功能以逃避正确的分类,同时最小化或限制总操作。 \ textIt {问题空间}攻击是指更改实际样本的逃避攻击。具体而言,本文分析了Android恶意软件域中的这两种类型之间的差距。两种类型的逃避攻击之间的差距是通过使用每种逃避攻击类型的分类器的重新培训过程来检查的。实验表明,这两种类型的再培训分类器之间的差距是戏剧性的,可能会增加到96 \%。已经发现,针对问题空间逃避攻击的效果较低或无效的攻击性攻击的分类器。此外,对不同问题空间逃避攻击的探索表明,对一个问题空间逃避攻击的重新探测可能有效地抵抗其他问题空间逃避攻击。

Android malware is a spreading disease in the virtual world. Anti-virus and detection systems continuously undergo patches and updates to defend against these threats. Most of the latest approaches in malware detection use Machine Learning (ML). Against the robustifying effort of detection systems, raise the \emph{evasion attacks}, where an adversary changes its targeted samples so that they are misclassified as benign. This paper considers two kinds of evasion attacks: feature-space and problem-space. \emph{Feature-space} attacks consider an adversary who manipulates ML features to evade the correct classification while minimizing or constraining the total manipulations. \textit{Problem-space} attacks refer to evasion attacks that change the actual sample. Specifically, this paper analyzes the gap between these two types in the Android malware domain. The gap between the two types of evasion attacks is examined via the retraining process of classifiers using each one of the evasion attack types. The experiments show that the gap between these two types of retrained classifiers is dramatic and may increase to 96\%. Retrained classifiers of feature-space evasion attacks have been found to be either less effective or completely ineffective against problem-space evasion attacks. Additionally, exploration of different problem-space evasion attacks shows that retraining of one problem-space evasion attack may be effective against other problem-space evasion attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源