论文标题
部分可观测时空混沌系统的无模型预测
Deep learning framework for robot for person detection and tracking
论文作者
论文摘要
使用机器人平台在人群中追踪感兴趣的人是人类机器人互动的基石之一。受到计算能力,快速运动和目标遮挡限制的机器人平台需要一个有效且健壮的框架来执行跟踪。本文提出了一个深度学习框架,用于使用立体声相机使用移动机器人跟踪人员。所提出的系统根据其头部检测一个人,然后利用低成本的高速回归网络跟踪器来跟踪实时感兴趣的人。移动机器人的视觉伺服使用是使用PID控制器设计的,PID控制器利用跟踪器的输出和后续帧中人员的深度估计,因此根据目标移动提供了机器人的平稳和适应性运动。提出的系统已在真实的环境中进行了测试,从而证明了其有效性。
Robustly tracking a person of interest in the crowd with a robotic platform is one of the cornerstones of human-robot interaction. The robot platform which is limited by the computational power, rapid movements, and occlusions of the target requires an efficient and robust framework to perform tracking. This paper proposes a deep learning framework for tracking a person using a mobile robot with a stereo camera. The proposed system detects a person based on its head, then utilizes the low-cost, high-speed regression network-based tracker to track the person of interest in real-time. The visual servoing of the mobile robot has been designed using a PID controller which utilizes tracker output and depth estimation of the person in subsequent frames, hence providing smooth and adaptive movement of the robot based on target movement. The proposed system has been tested in a real environment, thus proving its effectiveness.