论文标题

全球模型学习,用于对弹性可变形线性对象进行大型变形控制:一种有效而适应性的方法

Global Model Learning for Large Deformation Control of Elastic Deformable Linear Objects: An Efficient and Adaptive Approach

论文作者

Yu, Mingrui, Lv, Kangchen, Zhong, Hanzhong, Song, Shiji, Li, Xiang

论文摘要

机器人对可变形线性对象(DLOS)的机器人操纵在许多领域都具有广泛的应用前景。但是,一个关键问题是获得确切的变形模型(即机器人运动如何影响DLO变形),这些模型很难在不同的DLOS之间进行计算和变化。因此,DLOS的形状控制具有挑战性,尤其是对于需要全球和更准确模型的大型变形控制。在本文中,我们提出了一种离线和在线数据驱动的方法,用于有效地学习全球变形模型,从而可以通过离线学习进行准确的建模,并通过在线适应进行新的DLOS进行进一步更新。具体而言,首先,由神经网络近似的模型在离线数据上进行了训练,然后无缝迁移到在线阶段,并在实际操纵过程中进一步在线更新。引入了几种策略,以提高模型的效率和泛化能力。我们提出了一个基于凸优化的控制器,并使用Lyapunov方法分析了系统的稳定性。详细的模拟和现实世界实验表明,我们的方法可以有效,精确地估计变形模型,并在2D和3D双臂操纵任务中对未经训练的DLOS实现大的变形控制,而不是现有方法。它仅使用模拟数据来实现现实世界中不同DLO的不同所需形状的所有24个任务,仅使用用于离线学习的仿真数据。

Robotic manipulation of deformable linear objects (DLOs) has broad application prospects in many fields. However, a key issue is to obtain the exact deformation models (i.e., how robot motion affects DLO deformation), which are hard to theoretically calculate and vary among different DLOs. Thus, shape control of DLOs is challenging, especially for large deformation control which requires global and more accurate models. In this paper, we propose a coupled offline and online data-driven method for efficiently learning a global deformation model, allowing for both accurate modeling through offline learning and further updating for new DLOs via online adaptation. Specifically, the model approximated by a neural network is first trained offline on random data, then seamlessly migrated to the online phase, and further updated online during actual manipulation. Several strategies are introduced to improve the model's efficiency and generalization ability. We propose a convex-optimization-based controller, and analyze the system's stability using the Lyapunov method. Detailed simulations and real-world experiments demonstrate that our method can efficiently and precisely estimate the deformation model, and achieve large deformation control of untrained DLOs in 2D and 3D dual-arm manipulation tasks better than the existing methods. It accomplishes all 24 tasks with different desired shapes on different DLOs in the real world, using only simulation data for the offline learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源