论文标题
Pauli string String分区算法与ISING模型同时测量
Pauli String Partitioning Algorithm with the Ising Model for Simultaneous Measurement
论文作者
论文摘要
我们提出了一种有效的算法,用于将Pauli字符串分配到亚组中,该算法可以同时在单个量子电路中测量。我们的分区算法大大减少了量子化学的变量量子量化量的总测量总数,量子化学是量子计算的最有希望的应用之一。该算法基于ISING模型优化问题,该问题可以使用ISING机器快速解决。我们开发了一种算法,该算法适用于尺寸的问题大于iSing机器可以通过迭代用途处理的最大变量数量($ n_ \ text {bit} $)。该算法比其他算法(例如Boppana--Halldórsson算法和Bron-bron-bron-kerbosch算法)具有更好的时间复杂性和解决方案最佳性,这对于快速有效地减少了测量多Pairi String的预期值所需的量子电路数量。我们使用第二代数字退火器(一种高性能的硬件,最高65,535美元的Pauli Strings of Hamilton of Molecules of Hamiltonians and Quantum Statogroghice),使用第二代数字退火器(高性能的硬件)调查了算法的性能。我们证明,量子化学计算的分区问题可以通过$ o(n)$的时间复杂度解决,对于$ n \ leq n_ \ text {bit} $和$ o(n^2)$,对于$ n> n_> n_ \ text {bit text {bit {bit {bit} $,对于最坏的情况,$ n $表示$ n $ n $ n $ n $ n $ texts texts texts texts = texts = texts = texts = texts = texts fexts = 8这项研究使用的第二代数字退火器。还原因子是Pauli Strings的数量除以所获得的分区数,最多可能是200美元。
We propose an efficient algorithm for partitioning Pauli strings into subgroups, which can be simultaneously measured in a single quantum circuit. Our partitioning algorithm drastically reduces the total number of measurements in a variational quantum eigensolver for a quantum chemistry, one of the most promising applications of quantum computing. The algorithm is based on the Ising model optimization problem, which can be quickly solved using an Ising machine. We develop an algorithm that is applicable to problems with sizes larger than the maximum number of variables that an Ising machine can handle ($n_\text{bit}$) through its iterative use. The algorithm has much better time complexity and solution optimality than other algorithms such as Boppana--Halldórsson algorithm and Bron--Kerbosch algorithm, making it useful for the quick and effective reduction of the number of quantum circuits required for measuring the expectation values of multiple Pauli strings. We investigate the performance of the algorithm using the second-generation Digital Annealer, a high-performance Ising hardware, for up to $65,535$ Pauli strings using Hamiltonians of molecules and the full tomography of quantum states. We demonstrate that partitioning problems for quantum chemical calculations can be solved with a time complexity of $O(N)$ for $N\leq n_\text{bit}$ and $O(N^2)$ for $N>n_\text{bit}$ for the worst case, where $N$ denotes the number of candidate Pauli strings and $n_\text{bit}=8,192$ for the second-generation Digital Annealer used in this study. The reduction factor, which is the number of Pauli strings divided by the number of obtained partitions, can be $200$ at maximum.