论文标题
在随机嵌入图中的横梁
Crossings in Randomly Embedded Graphs
论文作者
论文摘要
我们考虑图中的交叉数量,该杂交被随机嵌入到凸点集中。我们对Kolmogorov距离的正态分布进行了估计,这意味着对于各种图形族,包括随机和弦图或完整周期的订单$ n^{ - 1/2} $的收敛速率。
We consider the number of crossings in a graph which is embedded randomly on a convex set of points. We give an estimate to the normal distribution in Kolmogorov distance which implies a convergence rate of order $n^{-1/2}$ for various families of graphs, including random chord diagrams or full cycles.