论文标题

编码有限的周期性

Codes for Constrained Periodicity

论文作者

Kobovich, Adir, Leitersdorf, Orian, Bar-Lev, Daniella, Yaakobi, Eitan

论文摘要

可靠性是赛道记忆的新兴非易失性技术的固有挑战,并且存在针对赛马场记忆的代码与具有约束周期性的代码之间的基本关系。先前的工作试图构建避免在Windows中周期性的代码,但仅提供了存在证明或需要高冗余。本文提供了避免有效(平均线性时间)和低冗余(接近下限)的周期性的第一个结构。所提出的算法基于迭代修复窗口,该窗口包含周期性,直到所有窗口有效为止。直觉上,由于没有单调进展,因此这种算法不应收敛。但是,我们通过利用编码器的微妙特性来证明平均线性时间复杂性。总体而言,我们都提供避免在所有窗口中周期性的结构,并且我们还研究了这种约束的基数。

Reliability is an inherent challenge for the emerging nonvolatile technology of racetrack memories, and there exists a fundamental relationship between codes designed for racetrack memories and codes with constrained periodicity. Previous works have sought to construct codes that avoid periodicity in windows, yet have either only provided existence proofs or required high redundancy. This paper provides the first constructions for avoiding periodicity that are both efficient (average-linear time) and with low redundancy (near the lower bound). The proposed algorithms are based on iteratively repairing windows which contain periodicity until all the windows are valid. Intuitively, such algorithms should not converge as there is no monotonic progression; yet, we prove convergence with average-linear time complexity by exploiting subtle properties of the encoder. Overall, we both provide constructions that avoid periodicity in all windows, and we also study the cardinality of such constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源