论文标题
多阶段随机变异不平等的预测校正ADMM
A prediction-correction ADMM for multistage stochastic variational inequalities
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The multistage stochastic variational inequality is reformulated into a variational inequality with separable structure through introducing a new variable. The prediction-correction ADMM which was originally proposed in [B.-S. He, L.-Z. Liao and M.-J. Qian, J. Comput. Math., 24 (2006), 693--710] for solving deterministic variational inequalities in finite dimensional spaces is adapted to solve the multistage stochastic variational inequality. Weak convergence of the sequence generated by that algorithm is proved under the conditions of monotonicity and Lipschitz continuity. When the sample space is a finite set, the corresponding multistage stochastic variational inequality is defined on a finite dimensional Hilbert space and the strong convergence of the sequence naturally holds true. A numerical example in that case is given to show the efficiency of the algorithm.