论文标题

压缩视频的深度评估:主观和客观研究

Deep Quality Assessment of Compressed Videos: A Subjective and Objective Study

论文作者

Lin, Liqun, Wang, Zheng, He, Jiachen, Chen, Weiling, Xu, Yiwen, Zhao, Tiesong

论文摘要

在视频编码过程中,通过全参考质量评估指标评估了压缩视频的感知质量。但是,很难以完美的质量获得参考视频。为了解决这个问题,设计不引用的压缩视频质量评估算法至关重要,该算法有助于衡量服务器端的体验质量和网络方面的资源分配。卷积神经网络(CNN)在视频质量评估(VQA)方面表现出了优势,近年来取得了希望。大规模质量数据库对于学习准确,强大的压缩视频质量指标非常重要。在这项工作中,采用了一种半自动标记方法来构建一个大规模的压缩视频质量数据库,这使我们能够用可管理的人类工作量标记大量的压缩视频。最大的压缩视频质量数据库,最大的压缩视频质量数据库的压缩视频质量数据库(CVSAR)。我们使用3D CNN训练无参考的压缩视频质量评估模型,用于时空特征提取和评估(STFEE)。实验结果表明,所提出的方法优于最先进的指标,并且在跨数据库测试中实现了有希望的概括性能。 CVSAR数据库和STFEE模型将公开使用,以促进可再现的研究。

In the video coding process, the perceived quality of a compressed video is evaluated by full-reference quality evaluation metrics. However, it is difficult to obtain reference videos with perfect quality. To solve this problem, it is critical to design no-reference compressed video quality assessment algorithms, which assists in measuring the quality of experience on the server side and resource allocation on the network side. Convolutional Neural Network (CNN) has shown its advantage in Video Quality Assessment (VQA) with promising successes in recent years. A large-scale quality database is very important for learning accurate and powerful compressed video quality metrics. In this work, a semi-automatic labeling method is adopted to build a large-scale compressed video quality database, which allows us to label a large number of compressed videos with manageable human workload. The resulting Compressed Video quality database with Semi-Automatic Ratings (CVSAR), so far the largest of compressed video quality database. We train a no-reference compressed video quality assessment model with a 3D CNN for SpatioTemporal Feature Extraction and Evaluation (STFEE). Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics and achieves promising generalization performance in cross-database tests. The CVSAR database and STFEE model will be made publicly available to facilitate reproducible research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源