论文标题
部分可观测时空混沌系统的无模型预测
Subcritical epidemics on random graphs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the contact process on random graphs with low infection rate $λ$. For random $d$-regular graphs, it is known that the survival time is $O(\log n)$ below the critical $λ_c$. By contrast, on the Erdős-Rényi random graphs $\mathcal G(n,d/n)$, rare high-degree vertices result in much longer survival times. We show that the survival time is governed by high-density local configurations. In particular, we show that there is a long string of high-degree vertices on which the infection lasts for time $n^{λ^{2+o(1)}}$. To establish a matching upper bound, we introduce a modified version of the contact process which ignores infections that do not lead to further infections and allows for a shaper recursive analysis on branching process trees, the local-weak limit of the graph. Our methods, moreover, generalize to random graphs with given degree distributions that have exponential moments.