论文标题
部分可观测时空混沌系统的无模型预测
Moving from continuous to discrete symmetry in the 2D XY model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the effects of discretization on the U(1) symmetric XY model in two dimensions using the Higher Order Tensor Renormalization Group (HOTRG) approach. Regarding the $Z_N$ symmetric clock models as specific discretizations of the XY model, we compare those discretizations to ones from truncations of the tensor network formulation of the XY model based on a character expansion, and focus on the differences in their phase structure at low temperatures. We also divide the tensor network formulations into core and interaction tensors and show that the core tensor has the dominant influence on the phase structure. Lastly, we examine a perturbed form of the XY model that continuously interpolates between the XY and clock models. We examine the behavior of the additional phase transition caused by the perturbation as the magnitude of perturbation is taken to zero. We find that this additional transition has a non-zero critical temperature as the perturbation vanishes, suggesting that even small perturbations can have a significant effect on the phase structure of the theory.