论文标题
跨设备现实世界图像超分辨率的双重对手适应
Dual Adversarial Adaptation for Cross-Device Real-World Image Super-Resolution
论文作者
论文摘要
由于复杂的成像过程,由不同摄像机捕获的相同场景可以表现出不同的成像模式,从而在对来自不同设备的图像的超级分辨率(SR)模型中引入了独特的熟练程度。在本文中,我们研究了一个新颖而实用的任务编码的跨设备SR,该SR努力适应一个现实世界中的SR模型,该模型在由一台摄像机捕获的配对图像上训练至由任意目标设备捕获的低分辨率(LR)图像。由于缺乏来自各种成像设备的配对数据,因此提出的任务极具挑战性。为了解决这个问题,我们提出了一个无监督的域适应机制,用于现实世界中的SR,名为Dual Verversarial Adaptation(DADA),该机制仅需要目标域中的LR图像,并具有来自源摄像头的可用真实配对数据。达达(Dada)采用了域不变的注意(DIA)模块,即使没有HR监督,也可以建立目标模型训练的基础。此外,DADA的双重框架促进了一个分支中的对抗性适应(Interaa),用于来自两个域中的两个LR输入图像,而在两个分支中,在两个分支中,用于LR输入图像的两个分支。 Interaa和IntraaA共同提高了从源域到目标的模型可传递性。我们在三个不同的摄像机之间进行了六个实际和实际适应设置的经验实验,与现有的最新方法相比,实现了卓越的性能。我们还评估了拟议的DADA,以解决对摄像机的改编,该摄像机提出了一个有希望的研究主题,以促进现实世界中超级分辨率的广泛应用。我们的源代码可在https://github.com/lonelyhope/dada.git上公开获得。
Due to the sophisticated imaging process, an identical scene captured by different cameras could exhibit distinct imaging patterns, introducing distinct proficiency among the super-resolution (SR) models trained on images from different devices. In this paper, we investigate a novel and practical task coded cross-device SR, which strives to adapt a real-world SR model trained on the paired images captured by one camera to low-resolution (LR) images captured by arbitrary target devices. The proposed task is highly challenging due to the absence of paired data from various imaging devices. To address this issue, we propose an unsupervised domain adaptation mechanism for real-world SR, named Dual ADversarial Adaptation (DADA), which only requires LR images in the target domain with available real paired data from a source camera. DADA employs the Domain-Invariant Attention (DIA) module to establish the basis of target model training even without HR supervision. Furthermore, the dual framework of DADA facilitates an Inter-domain Adversarial Adaptation (InterAA) in one branch for two LR input images from two domains, and an Intra-domain Adversarial Adaptation (IntraAA) in two branches for an LR input image. InterAA and IntraAA together improve the model transferability from the source domain to the target. We empirically conduct experiments under six Real to Real adaptation settings among three different cameras, and achieve superior performance compared with existing state-of-the-art approaches. We also evaluate the proposed DADA to address the adaptation to the video camera, which presents a promising research topic to promote the wide applications of real-world super-resolution. Our source code is publicly available at https://github.com/lonelyhope/DADA.git.