论文标题

隐私会计$ \ VAREPSILON $ CONOMICS:通过后验界改善差异隐私组成

Privacy accounting $\varepsilon$conomics: Improving differential privacy composition via a posteriori bounds

论文作者

Hartmann, Valentin, Bindschaedler, Vincent, Bentkamp, Alexander, West, Robert

论文摘要

差异隐私(DP)是发布汇总数据时广泛用于推理隐私的概念。在本文中,我们观察到某些DP机制可以接受后验隐私分析,该分析利用了这样一个事实,即某些输出泄漏了输入数据库的信息比其他信息更少。为了利用这一现象,我们引入了输出差异隐私(ODP)和新的构图实验,并利用这些新结构来获得大量的隐私预算节省,并改善了组成下的隐私 - 实用性权衡。所有这些都无需支付隐私而付出任何代价。我们不会削弱隐私保证。 为了证明我们的后验隐私分析技术的适用性,我们分析了两种众所周知的机制:稀疏矢量技术和提出的测试释放框架。然后,我们展示如何在更一般的环境中使用我们的技术来保存隐私预算:当差异私有的迭代机制在达到最大迭代次数之前终止,而当DP机制的输出提供不令人满意的效用时。前者的示例包括迭代优化算法,而后者的示例包括训练具有较大概括误差的机器学习模型。我们的技术可以应用于当前论文以外,以完善对现有DP机制的分析或指导未来机制的设计。

Differential privacy (DP) is a widely used notion for reasoning about privacy when publishing aggregate data. In this paper, we observe that certain DP mechanisms are amenable to a posteriori privacy analysis that exploits the fact that some outputs leak less information about the input database than others. To exploit this phenomenon, we introduce output differential privacy (ODP) and a new composition experiment, and leverage these new constructs to obtain significant privacy budget savings and improved privacy-utility tradeoffs under composition. All of this comes at no cost in terms of privacy; we do not weaken the privacy guarantee. To demonstrate the applicability of our a posteriori privacy analysis techniques, we analyze two well-known mechanisms: the Sparse Vector Technique and the Propose-Test-Release framework. We then show how our techniques can be used to save privacy budget in more general contexts: when a differentially private iterative mechanism terminates before its maximal number of iterations is reached, and when the output of a DP mechanism provides unsatisfactory utility. Examples of the former include iterative optimization algorithms, whereas examples of the latter include training a machine learning model with a large generalization error. Our techniques can be applied beyond the current paper to refine the analysis of existing DP mechanisms or guide the design of future mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源