论文标题

在部分可整合的模型中隐藏的伯特状态

Hidden Bethe states in a partially integrable model

论文作者

Zhang, Zhao, Mussardo, Giuseppe

论文摘要

我们提出了一个一维的多组分模型,当仅限于仅两个组件制成的子空间时,已知可以部分集成。通过构建完全抗对称的碱基,我们发现了与原本不可综合的子空间中置换操作员完全抗对称不可减至的代表相对应的可集成激发特征态。我们通过明确违反杨巴克斯特方程式来严格地确定这些子空间中的可集成性的分解。我们进一步求解了杨 - 巴克斯特方程的约束,以找到允许唯一的孤子结合状态的ANSATZ解决方案的出色矩。这些可集成的本征态与以前已知的嵌入式集成子空间具有明显的动态后果,因为它们没有跨越其单独的Krylov子空间,并且通用初始状态可以部分与它们重叠,因此具有缓慢的热化。然而,这种新颖的形式的弱真实性破坏了量子多体疤痕的对比,因为所涉及的可集成的特征状态并不一定较低。我们的方法提供了一种互补的途径,以达到量子多体疤痕,因为我们没有在不可融合模型中基于可解决的基础状态解决单个模式激发态的塔,而是识别出可在汉密尔顿人远离其集成点变形中生存的可集成本征状态。

We present a one-dimensional multi-component model, known to be partially integrable when restricted to the subspaces made of only two components. By constructing fully anti-symmetrized bases, we find integrable excited eigenstates corresponding to the totally anti-symmetric irreducible representation of the permutation operator in the otherwise non-integrable subspaces. We establish rigorously the breakdown of integrability in those subspaces by showing explicitly the violation of the Yang-Baxter's equation. We further solve the constraints from Yang-Baxter's equation to find exceptional momenta that allows Bethe Ansatz solutions of solitonic bound states. These integrable eigenstates have distinct dynamical consequence from the embedded integrable subspaces previously known, as they do not span their separate Krylov subspaces, and a generic initial state can partly overlap with them and therefore have slow thermalization. However, this novel form of weak ergodicity breaking contrasts that of quantum many-body scars in that the integrable eigenstates involved do not have necessarily low entanglement. Our approach provides a complementary route to arrive at quantum many-body scars since, instead of solving towers of single mode excited states based on a solvable ground state in a non-integrable model, we identify the integrable eigenstates that survive in a deformation of the Hamiltonian away from its integrable point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源