论文标题

紧密而紧凑的样本平均近似于关节机会约束的问题,用于最佳功率流量

Tight and Compact Sample Average Approximation for Joint Chance-constrained Problems with Applications to Optimal Power Flow

论文作者

Porras, Álvaro, Domínguez, Concepción, Morales, Juan M., Pineda, Salvador

论文摘要

在本文中,我们解决了通过样本平均近似重新重新重新估计的机会约束问题的解决方案。由此产生的数据驱动的确定性重新重新制定的形式是由大型MS诅咒的大规模混合计划。我们为MIP介绍了一种精确的分辨率方法,该方法结合了一组有效的不平等现象,以拧紧线性弛豫与系数增强和约束筛选算法的结合,以改善其大型MS并大大降低其大小。所提出的有效不平等基于k个开发的概念,可以使用多项式时间算法离线计算,并立即添加到MIP程序中。此外,它们对于提高大型MS的加强和多余约束的筛选速率同样有用。我们将程序应用于直流最佳功率流问题的概率约束版本,需求不确定。机会约束要求违反任何电源系统约束的可能性低于某些参数$ε> 0 $。在一系列涉及五个具有不同大小的功率系统的数值实验中,我们显示了提出的方法的效率,并将其与文献中当前可用的一些表现最佳的内部近似值进行了比较。

In this paper, we tackle the resolution of chance-constrained problems reformulated via Sample Average Approximation. The resulting data-driven deterministic reformulation takes the form of a large-scale mixed-integer program cursed with Big-Ms. We introduce an exact resolution method for the MIP that combines the addition of a set of valid inequalities to tighten the linear relaxation bound with coefficient strengthening and constraint screening algorithms to improve its Big-Ms and considerably reduce its size. The proposed valid inequalities are based on the notion of k-envelopes, can be computed offline using polynomial-time algorithms, and added to the MIP program all at once. Furthermore, they are equally useful to boost the strengthening of the Big-Ms and the screening rate of superfluous constraints. We apply our procedures to a probabilistically-constrained version of the DC Optimal Power Flow problem with uncertain demand. The chance constraint requires that the probability of violating any of the power system's constraints be lower than some parameter $ε> 0$. In a series of numerical experiments which involve five power systems of different size, we show the efficiency of the proposed methodology and compare it with some of the best-performing convex inner approximations currently available in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源