论文标题

心电图深度学习用于预测后术死亡率

Electrocardiographic Deep Learning for Predicting Post-Procedural Mortality

论文作者

Ouyang, David, Theurer, John, Stein, Nathan R., Hughes, J. Weston, Elias, Pierre, He, Bryan, Yuan, Neal, Duffy, Grant, Sandhu, Roopinder K., Ebinger, Joseph, Botting, Patrick, Jujjavarapu, Melvin, Claggett, Brian, Tooley, James E., Poterucha, Tim, Chen, Jonathan H., Nurok, Michael, Perez, Marco, Perotte, Adler, Zou, James Y., Cook, Nancy R., Chugh, Sumeet S., Cheng, Susan, Albert, Christine M.

论文摘要

背景。临床实践中使用的术前风险评估的识别能力限制了术后死亡率的风险。我们假设心电图包含隐藏的风险标记,可以帮助预后术后死亡率。方法。在派生前患者(59岁+-19岁为55%的女性)的衍生队列中,开发了一种深度学习算法,以利用术前ECGS的波形信号来区分术后死亡率。在保留的内部测试数据集和两个外部医院队列中评估了模型性能,并与修订后的心风险指数(RCRI)分数进行了比较。结果。在派生队列中,有1,452人死亡。该算法在固定的测试队列中以AUC为0.83(95%CI 0.79-0.87)的AUC歧视死亡率(95%CI 0.79-0.87),其AUC(CI 0.61-0.72)的歧视。通过深度学习模型的风险预测确定为高风险的患者的术后死亡率的未调整优势比(OR)为8.83(5.57-13.20),与未经调整的或2.08(CI 0.77-3.50)相比,对RCRI较大的Ans carder ser carter ser carter的患者在术后的2.08(CI 0.77-3.50)中,对RCRI的表现较大。 (CI 0.77-0.92),非心脏手术,AUC为0.83(0.79-0.88),以及AUC为0.76(0.72-0.81)的Catherization或内窥镜检查套件。该算法在两个独立的外部验证队列中类似地歧视死亡率的风险分别为0.79(0.75-0.83)和0.75(0.74-0.76)。结论。这些发现证明了一种新颖的深度学习算法如何应用于术前的ECG,可以改善术后死亡率的歧视。

Background. Pre-operative risk assessments used in clinical practice are limited in their ability to identify risk for post-operative mortality. We hypothesize that electrocardiograms contain hidden risk markers that can help prognosticate post-operative mortality. Methods. In a derivation cohort of 45,969 pre-operative patients (age 59+- 19 years, 55 percent women), a deep learning algorithm was developed to leverage waveform signals from pre-operative ECGs to discriminate post-operative mortality. Model performance was assessed in a holdout internal test dataset and in two external hospital cohorts and compared with the Revised Cardiac Risk Index (RCRI) score. Results. In the derivation cohort, there were 1,452 deaths. The algorithm discriminates mortality with an AUC of 0.83 (95% CI 0.79-0.87) surpassing the discrimination of the RCRI score with an AUC of 0.67 (CI 0.61-0.72) in the held out test cohort. Patients determined to be high risk by the deep learning model's risk prediction had an unadjusted odds ratio (OR) of 8.83 (5.57-13.20) for post-operative mortality as compared to an unadjusted OR of 2.08 (CI 0.77-3.50) for post-operative mortality for RCRI greater than 2. The deep learning algorithm performed similarly for patients undergoing cardiac surgery with an AUC of 0.85 (CI 0.77-0.92), non-cardiac surgery with an AUC of 0.83 (0.79-0.88), and catherization or endoscopy suite procedures with an AUC of 0.76 (0.72-0.81). The algorithm similarly discriminated risk for mortality in two separate external validation cohorts from independent healthcare systems with AUCs of 0.79 (0.75-0.83) and 0.75 (0.74-0.76) respectively. Conclusion. The findings demonstrate how a novel deep learning algorithm, applied to pre-operative ECGs, can improve discrimination of post-operative mortality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源