论文标题

生成的对抗神经操作员

Generative Adversarial Neural Operators

论文作者

Rahman, Md Ashiqur, Florez, Manuel A., Anandkumar, Anima, Ross, Zachary E., Azizzadenesheli, Kamyar

论文摘要

我们提出了生成的对抗神经操作员(GANO),这是一种用于无限维函数空间学习概率的生成模型范式。众所周知,自然科学和工程具有多种类型的数据,这些数据是从无限维函数空间中取样的,在这些数据中,经典的有限维深生成性对抗网络(GAN)可能不直接适用。 Gano概括了GAN框架,并允许通过学习无限维空间中的推动向前操作员地图对功能进行采样。 GANO由两个主要组成部分,一个发电机神经操作员和一个歧视神经功能组成。发电机的输入是用户指定概率度量的函数样本,例如高斯随机字段(GRF),而发电机输出是合成数据功能。鉴别器的输入是真实的或合成的数据功能。在这项工作中,我们使用Wasserstein标准实例化GANO,并展示如何在无限维空间中计算瓦斯汀损失。在受控情况下,我们在经验上研究了输入功能和输出函数是GRF的样本,并将其性能与有限维度对应物GAN进行比较。我们从经验上研究了加诺对火山活动现实世界功能数据的疗效,并显示出其优于甘恩的性能。

We propose the generative adversarial neural operator (GANO), a generative model paradigm for learning probabilities on infinite-dimensional function spaces. The natural sciences and engineering are known to have many types of data that are sampled from infinite-dimensional function spaces, where classical finite-dimensional deep generative adversarial networks (GANs) may not be directly applicable. GANO generalizes the GAN framework and allows for the sampling of functions by learning push-forward operator maps in infinite-dimensional spaces. GANO consists of two main components, a generator neural operator and a discriminator neural functional. The inputs to the generator are samples of functions from a user-specified probability measure, e.g., Gaussian random field (GRF), and the generator outputs are synthetic data functions. The input to the discriminator is either a real or synthetic data function. In this work, we instantiate GANO using the Wasserstein criterion and show how the Wasserstein loss can be computed in infinite-dimensional spaces. We empirically study GANO in controlled cases where both input and output functions are samples from GRFs and compare its performance to the finite-dimensional counterpart GAN. We empirically study the efficacy of GANO on real-world function data of volcanic activities and show its superior performance over GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源