论文标题

观看观察者:远程销售软件中的偏见和脆弱性

Watching the watchers: bias and vulnerability in remote proctoring software

论文作者

Burgess, Ben, Ginsberg, Avi, Felten, Edward W., Cohney, Shaanan

论文摘要

教育工作者迅速转向远程监管和考试软件,以满足其测试需求,这是由于Covid-19的大流行和教育部门的虚拟化扩大。州议会越来越多地利用这些软件进行高股份法律和医疗许可考试。使用这些复杂的软件出现了三个关键问题:考试完整性,检查程序公平性以及检查员的安全性和隐私。我们通过对美国法学院和州检察官许可考试中使用的四个主要批准套房进行的案例研究对每个问题进行了首次技术分析。我们将这些套路套件进行了反向工程,发现尽管有高度安全的承诺,但他们所有的反作战措施都可以绕过,并可能带来很大的用户安全风险。我们将评估当前的面部识别分类器与Excplify使用的分类器(具有最大市场份额的法律考试套件)使用的分类器,以确定其准确性,并确定是否更容易标记带有某些肤色的面孔进行作弊。最后,我们提供建议,以提高远程验证的考试经验的完整性和公平性。

Educators are rapidly switching to remote proctoring and examination software for their testing needs, both due to the COVID-19 pandemic and the expanding virtualization of the education sector. State boards are increasingly utilizing these software for high stakes legal and medical licensing exams. Three key concerns arise with the use of these complex software: exam integrity, exam procedural fairness, and exam-taker security and privacy. We conduct the first technical analysis of each of these concerns through a case study of four primary proctoring suites used in U.S. law school and state attorney licensing exams. We reverse engineer these proctoring suites and find that despite promises of high-security, all their anti-cheating measures can be trivially bypassed and can pose significant user security risks. We evaluate current facial recognition classifiers alongside the classifier used by Examplify, the legal exam proctoring suite with the largest market share, to ascertain their accuracy and determine whether faces with certain skin tones are more readily flagged for cheating. Finally, we offer recommendations to improve the integrity and fairness of the remotely proctored exam experience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源